Assessing Protein Quality in Food:

Navigating Regulations and Sources

James D. House Department of Human Nutritional Sciences University of Manitoba Winnipeg, MB, Canada

University of Manitoba

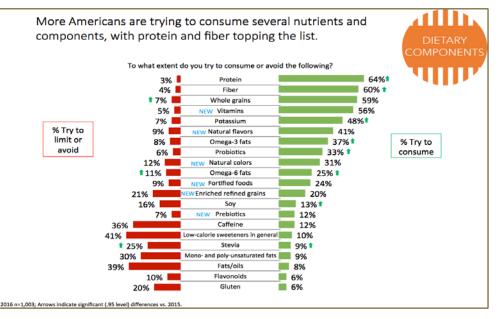
Disclosure Statement

Current Grants & Contracts

- Agriculture and Agri-Food Canada Growing Forward 2 Private: Public Partnership with:
 - Pulse Grower Associations and processing industries
 - Cereal Grower Associations and agronomic industries
- Natural Sciences and Engineering Research Council of Canada (NSERC)
 - Discovery Grant, Connect Grant
- Industry Contracts and Technical Services Agreements related to Protein Quality Assessment of foods and food ingredients
- Egg Farmers of Canada
- Manitoba Egg Farmers
- MITACS Canada
- Current Participation on Advisory Boards and Grant Review Panels
 - Danone Canada
 - ILSI North America Canadian Advisory Council
 - AOAC International Editorial Board
- No financial interests in agri-food/nutrition companies

Outline

- Communicating Protein Messages
- Protein Quality: Supporting Protein Content Claims
- Current and Proposed Approaches to Measuring
 Protein Quality
 - Challenges and Opportunities
- Protein Quality Workshop Overview of Key Findings



Consumers are Seeking Protein

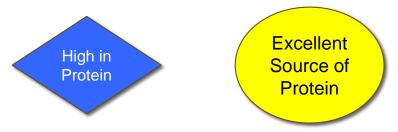
10 Key Trends in Food, Nutrition & Health 2016

http://www.new-nutrition.com

- 64% of respondents try to consume protein
 - More prevalent in women and those with higher incomes

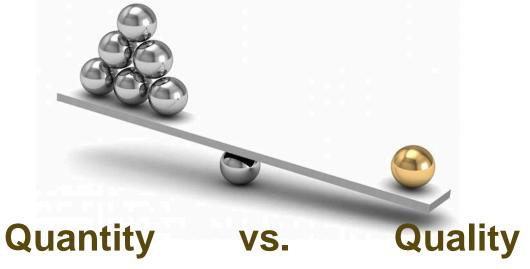
2016 Food and Health Survey. Food Insight, May 11, 2016. International Food Information Council

Communicating Food Protein Messages


Nutrition Facts Panel

- Crude Protein Content
- % Daily Value (in US)

Nutrition Facts Valeur nutritive		
Per 1 bowl (300 g) / Pour 1 bol (300 g)		
Amount Teneur	% Daily Value % valeur quotidienne	
Calories / Calories 440		
Fat / Lipides 19 g	29 %	
Saturated / Saturés + Trans / Trans 0.2		
Cholesterol / Cholestérol 35 mg		
Sodium / Sodium 8	60 mg 36 %	
Carbohydrate / Glucides 53 g 18		
Fibre / Fibres 4 g	16 %	
Sugars / Sucres 6 g		
Protein / Protéines 15 g		
Vitamin A / Vitamine A	A 45 %	
Vitamin C / Vitamine	C 4 %	
Calcium / Calcium	20 %	
Iron / Fer	20 %	


Claims

- Origin Claims
- Composition Claims
- Symbols
- Nutrient Content Claims
 - Source \rightarrow Excellent Source
 - Comparative Claims

What Evidence is Needed to Support Content Claims?

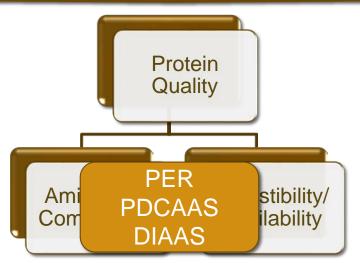
• Nitrogen Content

VERSITY

- Nitrogen Conversion Factor
 - Per Weight or Volume basis
 - Per % Energy basis

- Amino Acid Composition
- Digestibility/Availability of Amino Acids for Metabolic Work

What Evidence is Needed to Support Content Claims?

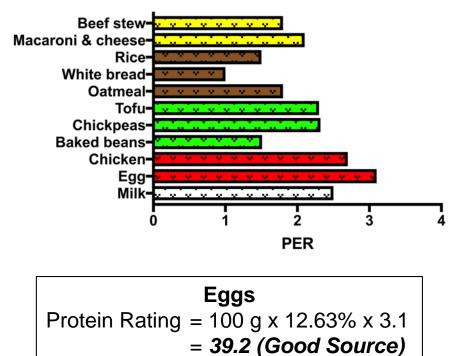

Jurisdiction	Basis for Protein Content Claims	Methodology
	Protein Quality & Quantity	Protein Rating System based on the Protein Efficiency Ratio (PER)
* * * * * * * * * * * * * * * * * * * *	Protein Quality & Quantity	Protein Digestibility-Corrected Amino Acid Score (PDCAAS)
* * * * * * *	Protein Quantity	Expression of protein content relative to energy content

Proposed Method: Digestible Indispensable Amino Acid Score (DIAAS)

Establishing Evidence for Protein Content Claims

Protein Quality Assessment

How well does the amino acid pattern match human amino acid needs? To what extent are the amino acids digested, absorbed and ultimately made available for metabolic demands?



The Protein Rating Approach

- Based on Protein Efficiency Ratio
 - Rat bioassay
 - Weight gain/Protein intake over 28 days
- Adjustments relative to reference protein (Casein)
 - Adj. PER of Casein = 2.5
- Protein Rating = PER x Protein
 Contained in Reasonable Daily Intake
 - 20 ->39.9 = Source of Protein
 - 40 and above = Excellent Source of Protein

PER Values of Common Foods

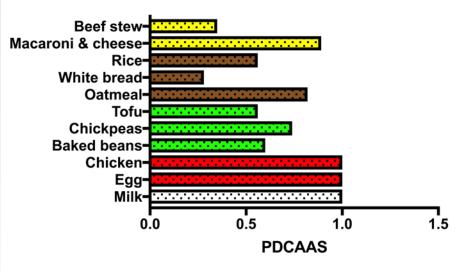
The Protein Rating Approach

Advantages

- Simple
- Provides a summative biological response to protein intake

Disadvantages

- Rodent bioassay → not reflective of human amino acid needs
- Ethical constraints
- Limited data available
 - 47 entries in the CFIA PER table
 - 184,022 foods in USDA Food Composition Databases
- Non-additive
 - Limits predictions for new food products



Product of:

- Amino Acid Score (AAS)
 - o AA in food/AA in reference pattern
 - o mg/g protein
 - Reference pattern of 2-5 yr old school children (1991)
- True Fecal Protein Digestibility (TFPD)
 - Fecal N output/Dietary N input
 - Corrected for endogenous losses

PDCAAS Values of Common Foods

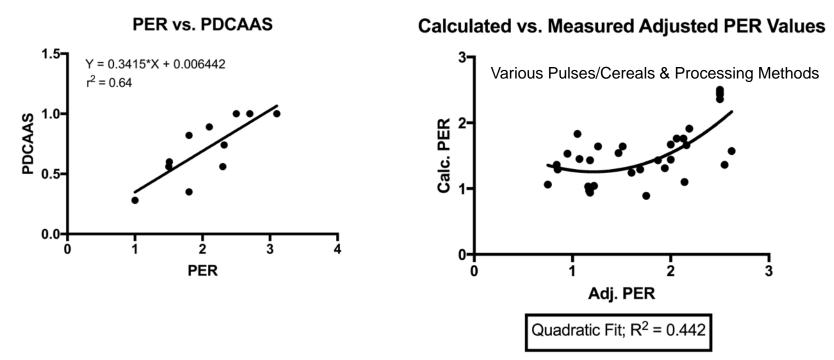
Protein Content Claims

- PDCAAS x Protein content of "RACC"
 - Representative amount customarily consumed
- Compare to Daily Value (50 g)
 - 5 9.9 g = Good Source
 - 10 g or greater = Excellent Source

Eggs

50 g x 12.63% x 1.0 = 6.32 (Good Source)

Advantages


- Simple
- Robust AA datasets
- Additive
 - Permits calculations of PDCAAS values of mixtures

Disadvantages

- Rodent bioassay → not reflective of human amino acid needs
- Fecal protein digestibility
 - Impact of gut microbiota
- Ethical constraints
- Truncation of values > 1.00

PER vs. PDCAAS

The DIAAS Approach

Proposed Approach – Has yet to be adopted by any jurisdiction

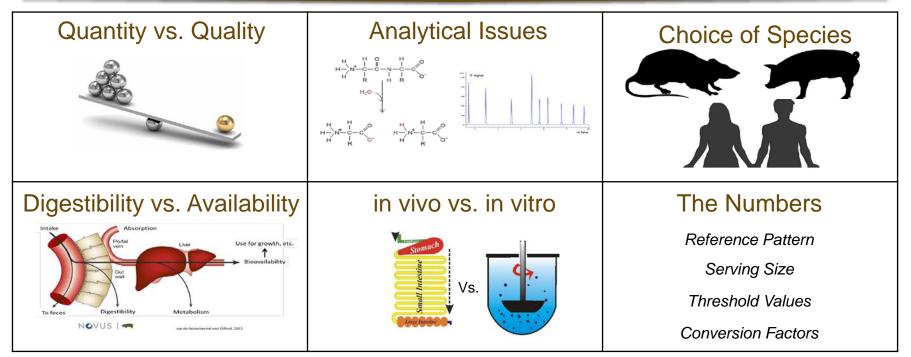
The DIAAS Approach

Proposed Approach

- AA treated as individual nutrients
- Uses ileal digestibility values
- Scores >1.00 are not truncated

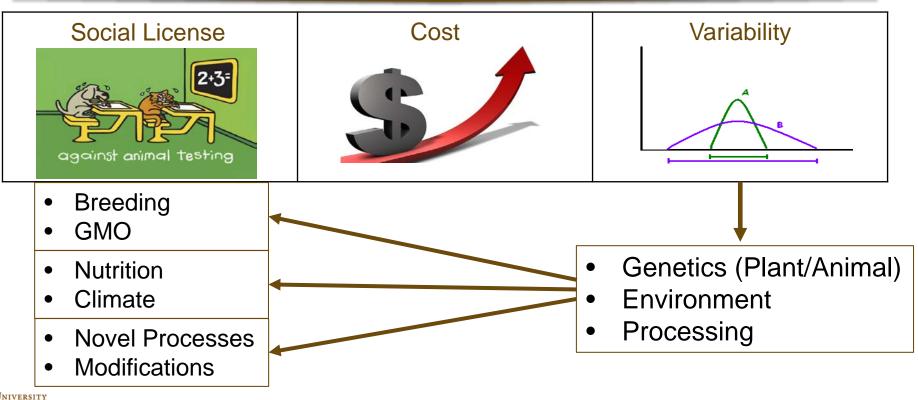
Advantages

• Should be more reflective of the ability of a food to provide available protein

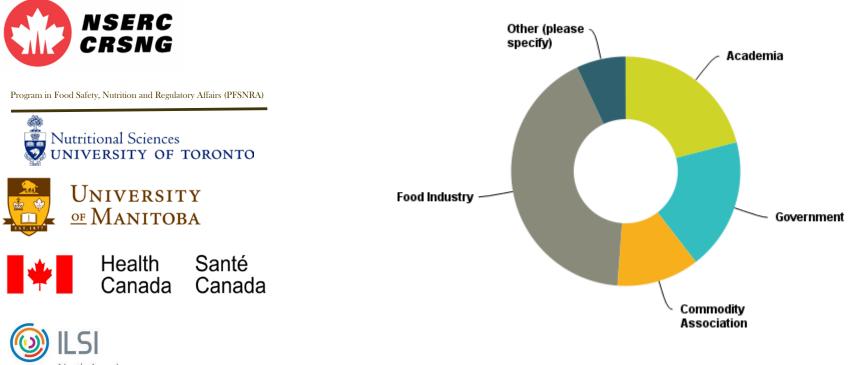

Disadvantages

- Bioassay
 - Ethical constraints
- Multiple analyses required for one DIAAS value

Methods Comparison


Technical Considerations

Methods Comparison

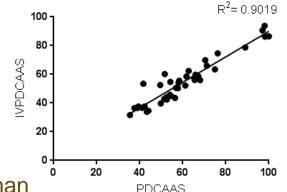

Other Considerations

Manitoba

Protein Quality Workshop – Addressing Research Gaps

November 16, 2016, Toronto, ON

North America


Protein Quality Workshop – Addressing Research Gaps

November 16, 2016, Toronto, ON

Workshop – Key Themes

- Harmonize approaches used across jurisdictions
 - Provide certainty, affordability, accessibility, predictability
- Address significant research gaps
 - Does measuring protein quality address a human health concern
 - Dietary patterns vs. special purpose foods (RUTF)
 - Alternatives to in vivo assays?

White paper being prepared for publication

