Can Dietary Interventions Impact Cancer risk, Enhance Efficacy of Therapy, and Promote Survivorship?

Steven K. Clinton, MD, Ph.D

January 22, 2017

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

														I																								
1100 010	11 001 101	10001 1000	1010001	10001 10	001 11 10	01010101	1100 010	11 001 101	0001 10	001 10100	01 10001 1	10001 11	10101010	011100 01	1011 001	101000	1 10001 1	010001	10001 10	001 11 10	01010101	1100 010	11 001 10	010001 1	0001 101	0001 10	001 1000	01 11 101	010									
<u>, , , , , , , , , , , , , , , , , , , </u>		7 7		-2-	- (-ð-	e A	-2	é d	A																		T A	∖ Č	G T	Ğ	G	ÇŤ	A I	ι T	G	¢-
C G	Ŧ	GG	C 1	F A	- A	r G	6	C G	т	ТА	G																						TG	GA				
ĠĊ	A	C C	G /	10001 1010 A T	T A	A C	G	GC	A	A T	C	1170101									C T	A	A. T	G	CIC	G		WA.	NST IN	Ta Ma	THE OWNER	2 4	100				and a	1.21
RAAD (AND	BHIL A	а _т Щ		intų il _t	τ. Δ	THE O			111	(INCO) INCO	AN A DISCOUNT OF		1001		tinningin	A	T I IBI		I ANI IN CO	CG	GCA	TIM	NIIII (C)	IIIGIII	TG	IIGI	IIIDIII	AND IN THE	$A \subset A$	TILL	GIIICI	IIIQI I	ĢŢ	111 (111	AIIIGI		10	101
3.6	i a					_				1	901				_	_					180		16.			-	_							1.0.1	12			
																		+																				
																			00-5																			3
Ň		COM		SIVL	CANC			`										-1	1)																			
	\cup	COMP			CANC			>											1																			3.

Food-based Cancer Prevention Strategies

Steven K. Clinton, MD, Ph.D

January 22, 2017

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

									UII																									1111				1					IIIII I			1	
100 0101	1 001	101000	1 1000	01 1010	0001 10	0001 10	0001 1	1010	101011	100 01	1011 00	01 1010	0001 10	001 10	0001 1	0001 10	001 11	101010	1011100	001011	001 101	0001 1	0001 10	10001	10001 10	0001 11 1	0101010	011100 0	01011 00	1 10100	01 1000	01 1010	001 100	01 1000	1 11 101	010											
<u> </u>			_			-2-	- 8-	-t-	-	-	đ	-11-	-é-	ě.	d ,	4 1																					A (I G	T	G	G (C T	A	A	T	Ģ	ę
C G	т	G	G	с		A	A	T	G	-C	-c-	G	T	T.	A (G							_	_																							
G C	A	C	C	G	A	Ť	T	A	C	G	G	Ĉ	A	A	Ť	C																		Té	G	ца А	÷c /	i i	TAG	ê A	è c i	-	N T	T TT	À	c's	-
	ни _с		_ III.					A					010000						01011.00		1.10001.10		1000		1,1 0110 ()		a G C	A III	II AIEII	C. IIIIC	am d	G	IIIG II	ind in		$A \subset A$	1	G		u G				III GI III			-
		-		-		-	-		-			-			-		2			-		_				_	-	-			-	-	-	The Date		_	_				_	-		-	-		-
																								4.	3																						1
																																															1

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute 101011 0010001 10001 101001 101001 101001

Conflicts of Interest: None

Opinions: Many !

Research Funding: NIH: NCI AICR ACS OSU Pelotonia (The James) Growing the Cure (OSU) OSU-CCC Food Innovation Center

The Conceptual Framework: Diet and Nutrition-Based Cancer <u>Prevention Strategies</u>

Holism

- Dietary Patterns
- Foods (whole, processed, functional)
- Nutraceuticals
- Chemoprevention (chemically pure)
 - Nutrients (vitamins, minerals, FA, etc.)
 - Natural compounds (phytochemicals)

Reductionism

The Conceptual Framework: Diet and Nutrition-Based Cancer <u>Prevention Strategies</u>

- Energy Balance
 - Intake
 - Metabolism
 - Exercise

Holism

- Dietary Patterns
 - Foods (whole, processed, functional)
 - Nutraceuticals
 - Chemoprevention (chemically pure)
 - Nutrients (vitamins, minerals, FA, etc.)
 - Natural compounds (phytochemicals)

Reductionism

PREHENSIVE CANCER CENTE

Foods and **Functional Foods**:

Key Assumptions and Principles

- Get comfortable with the "black box" !
- Multiple bioactives with diverse mechanisms of action, multiple targets, will be "more" effective.
- Multiple bioactives at modest dose with non-overlapping toxicity provide a margin of safety.

The James

Hannahan and Weinberg: Cell 144:646 2011

Foods and Functional Foods for Cancer Prevention: Strategic and Scientific Principles for Trials

- Agent / Product Development
 - Target a specific exposure (dose) based upon "science"
 - Design a vehicle (food) to assure compliance
 - Components / Ingredients
 - Cultivar (genetics, horticulture, senescence, processing/storage)
 - Extract or concentrate
 - Analytic chemistry
 - Taste / sensory testing
 - Packaging and stability

PREHENSIVE CANCER CENT

Foods and Functional Foods for Cancer Prevention: Strategic and Scientific Principles for Trials

- Agent / Product Development
 - Target a specific exposure (dose) based upon "science"
 - Design a vehicle (food) to assure compliance
 - Components / Ingredients
 - Cultivar (generic, policulture, senescence, processing/storage)
 - Extract or concentrate
 - Analytic chemistry
 - Taste / sensory testing
 - Packaging and stability

HE OHIO STATE UNIVERSITY

Foods and Functional Foods for Cancer Prevention: Strategic and Scientific Principles for Trials

- Agent / Product Development
 - Target a specific exposure (dose) based upon "science"
 - Design a vehicle (food) to assure to multance
 - Components / Ingredients
 - Cultivar (genetic, hart culture, senescence, processing/storage)
 - Letter or concentrate
 - Analytic chemistry
 - Taste / sensory testing
 - Packaging and stability

HE OHIO STATE UNIVERSITY

Food Products for Cancer Prevention at OSU: Examples

Tomato Products

Soy Bread

 Black Raspberry

Food Products for Cancer Prevention : Clinical Trials

- Phase I (short term)
 - Healthy or target population
 - Dose (single or multiple)
 - Feasibility and compliance
 - Distribution and storage
 - Test intake assessment/monitoring tools/strategies
 - "Pharmacokinetics" (biomarkers of exposure)
 - Single dose and prolonged (days or weeks)
 - Begin to elucidate heterogeneity/variation
 - Safety
 - NCI Toxicity Criteria
 - Laboratory testing

THE OHIO STATE UNIVERSITY

Food Products for Cancer Prevention : Clinical Trials

- Phase II (intermediate duration)
 - Target or diseased population (dozens)
 - Dose (single or few)
 - Feasibility, compliance, safety
 - Biomarkers of exposure (food)
 - Blood, urine, tissue
 - Define heterogeneity of the population (genetics, drugs, supplements, diet)
 - Biomarkers of activity
 - Endocrine, immune, microbiome, metabolomics, etc.
 - Biomarkers of impact Target tissues and microenvironment
 - Carcinogenic cascade (hyperplasia, dysplasia, PIN, cancer)

Food Products for Cancer Prevention : Clinical Trials

- Phase III (long term)
 - Target population
 - Population-based (\$\$\$\$)
 - High-risk (\$)
 - Genetics / Inheritance
 - Carcinogen exposure
 - Premalignant lesions
 - Biosamples
 - Mechanistic studies
 - Define sensitive and resistant subgroups
 - Cancer outcome

THE OHIO STATE UNIVERSITY

- "Gold Standard"
 - Randomized double-blinded placebo controlled trial

The James

THE OHIO STATE UNIVERSITY

- Placebo
 - Difficult to create a true "placebo"
 - Patient awareness
 - Crossover by controls
- Background "noise"
 - Population exposure to food of interest
- Sufficient duration of exposure
- Appropriate timing of exposure

Tomato-based Food Products for Cancer Prevention

Bohn et al. Phase I Trial Nutr Cancer. 65:919-29, 2013

INTER TO THE REPORT OF THE REPORT

Tomatoes and Prostate Cancer: Scientific Basis

<u>Enhanced Risk</u> of Prostate Cancer

None.

No Association with Prostate Cancer

 Raisins, prunes, bananas, cantaloupe, watermelon, apples, pears, oranges, grapefruit, blueberries, peaches, apricots, plums, chili sauce, tofu, soybeans, string beans, broccoli, cabbage, Brussels sprouts, carrots, corn, peas, beans, lentils, squash, eggplant, zucchini, yams, sweet potatoes, spinach, kale, chard, lettuce, celery, alfalfa sprouts, garlic, tomato juice.

Reduced Risk of Prostate Cancer

<u>Tomatoes</u> (P < 0.03), <u>tomato sauce</u> (P < 0.001), <u>pizza</u> (P < 0.05).</p>

Giovannucci et al. JNCI 87: 1767, 1995

Tomatoes, Lycopene and Prostate Cancer: Scientific Basis

β,β-carotene-9',10'-dioxygenase (BCO2) impacts the anticancer activity of tomato and lycopene in the TRAMP model

- TRAMP model of prostate cancer
- Feed from weaning until 18 weeks of age (early cancer)

Diet	TRAMP+/: <i>Bco2</i> +/+	TRAMP+/-: <i>Bco2</i> -/-
AIN-93G Control	N=46	N=40
10% Tomato Powder	N=44	N=43
0.25% Lycopene Beadlets	N=45	N=39

10% tomato powder diet contained 0.384 +/- 0.040 g LYC per kg diet 0.25% lycopene beadlet diet contained 0.462 +/- 0.065 g LYC per kg diet

Serum Carotenoids: Lycopene

Serum Carotenoids: Lycopene

Prostate Carcinoma Incidence - TRAMP model. Tan et al., Cancer Prev Res 2016 Nov 2. [Epub ahead of print]

Multiple Logistic Regression Genotype P < 0.037 Diet P < 0.001

Grading Schema from Berman-Booty, L *et al. Toxicologic Pathology,* 40: 5-17, 2012

Supportive Studies

Grainger EM et al.

A comparison of plasma and prostate lycopene in response to typical servings of tomato soup, sauce or juice in men before prostatectomy. *Br J Nutr.* 2015 Aug 28;114(4):596-607.

Wan L, et al.

Dietary tomato and lycopene impact androgen signaling- and carcinogenesisrelated gene expression during early TRAMP prostate carcinogenesis. *Cancer Prev Res;* 6(6); 548–57, 2014.

Ke Zu, et al. Dietary Lycopene, Angiogenesis, and Prostate Cancer: A Prospective Study in the Prostate-Specific Antigen Era.

The James

THE OHIO STATE UNIVERSITY

J Natl Cancer Inst. 106 (2): djt430, 2014.

Zuniga KE et al. **The Interactions of Dietary Tomato Powder and Soy Germ on Prostate Carcinogenesis in the TRAMP Model** *Cancer Prev Res;* 6(6); 548–57, 2013

Tomato-soy food products for cancer prevention.

Tomato-Soy Juice: Phase I/II Study in Men with Prostate Cancer

- 0,1,2,3 cans per day (total n=60)
- Dose escalation design
- Pre-prostatectomy design
- Blood carotenoids
- Prostate carotenoids
- Urinary isoflavone metabolites
- Blood isoflavones
- Prostate isoflavones
- Genetics
- Metabolomics

1 can = 150 ml of juice (6 oz.) 22.5 mg lycopene 33 mg isoflavones

The James

THE OHIO STATE UNIVERSITY

Genetics Impacts on Tomato Carotenoid Distribution and Metabolism

THE OHIO STATE UNIVERSITY

Biomarkers of Impact: PSA changes (4 wks) in men consuming Tomato-Soy Juice

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Where are we going?

- Enhanced phytochemical bioavailability
 - Tomato varieties (genetics)
 - Tangerine vs Red
- Metabolomics of tomato phytochemicals
- Human genetics impacting phytochemical metabolism
- Preclinical
 - Tomato varieties and TRAMP
 - miRNA, mRNA, proteomic signatures
 - Impact on androgen signaling
 - Prevention of castrate resistance in TRAMP

Human bioactivity studies.

HE OHIO STATE UNIVERSITY

Soy Bread

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

Soy Bread: Product Development

Dr. Yael Vodovotz

Research

- Sensory
- Shelf stability
- Analytics

The goal is to deliver 60 mg of soy isoflavone in 2 slices of bread.

Almonds provide enzymes to cleave soy isoflavones

COMPREHENSIVE CANCER CENTER

Ahn-Jarvis, et al Journal of Agriculture and Food Chemistry, 61: 3111-3120, 2013. .

Soy vs Soy-Almond Bread HPLC / MS Analysis: Variation in Processing

"Upscaling" Soy Bread for Human Clinical Studies

National Institutes of Health-NCI R21 and R01 Grant

Soy Almond Bread and Prostate Cancer

OMPREHENSIVE CANCER CENTER

Soy vs Soy-Almond Bread in Men with Prostate Cancer

Isoflavone Pharmacokinetics and Metabolism after Consumption of a Standardized Soy and Soy-Almond Bread in Men with Asymptomatic Prostate Cancer

Jennifer H. Ahn-Jarvis¹, Steven K. Clinton^{2,3}, Elizabeth M. Grainger³, Kenneth M. Riedl^{1,3}, Steven J. Schwartz^{1,3}, Mei-Ling T. Lee⁴, Raul Cruz-Cano⁴, Gregory S. Young⁵, Gregory B. Lesinski^{2,3}, and Yael Vodovotz^{1,3} Cancer Prevention Research

Jen Ahn-Jarvis, Ph.D.

HPLC / MS 4 metabolic phenotypes

Almonds alter isoflavone metabolism

Soy alters PSA kinetics

Research Article

Consumption of Soy Isoflavone Enriched Bread in Men with Prostate Cancer Is Associated with Reduced Proinflammatory Cytokines and Immunosuppressive Cells

Gregory B. Lesinski^{1,2}, Patrick K. Reville¹, Thomas A. Mace¹, Gregory S. Young³, Jennifer Ahn-Jarvis⁴, Jennifer Thomas-Ahner¹, Yael Vodovotz^{2,4}, Zeenath Ameen¹, Elizabeth Grainger¹, Kenneth Riedl^{2,4}, Steven Schwartz^{2,4}, and Steven K. Clinton^{1,2}

Cancer Prevention Research

Greg Lesinski, Ph.D.

Soy impacts anti-cancer immunity

Clinical Trials: The Oral Carcinogenesis Study

NIH-NCI U01 2014-2019

Weghorst, Schwartz, Kumar, Clinton

Interactions:

Gender, Smoking, BRB, on the oral microbiome and mucosal gene expression associated with early carcinogenesis.

The black raspberry portfolio of phytochemicals

"Multiple interactive bioactives with diverse mechanisms of action"

Analytical Chemistry: Overlaid extracted ion chromatograms of the over 4000 compounds detected in freeze-dried BRB powder and nectar using an untargeted metabolomics LC-MS approach (Matthew Teegarden / Steven Schwartz et al Abstract/Poster)

BRB Polyphenols and the Murine Gut Microbiome

Cohorts: Food-based interventions.

Prevention

- Therapy
 - Recovery from surgery
 - Enhance efficacy of therapeutics
 - Chemotherapy, radiation, biological, hormonal
 - Reduce toxicity of therapy
- Survivors (remission)
 - Reduce recurrence rates
 - Reduce second primary risk
 - Reduce long-term complications of therapy
 - Cancers, cardiovascular, renal, cognitive, metabolic, etc.

The James

Collaborators on Food Projects

- Steven K. Clinton Laboratory
 - Nancy E. Moran
 - Jennifer Thomas-Ahner
 - Elizabeth Grainger
 - Shirley Hsueh-Li Tan
 - Jenny Lei Wan
- Biostatistics OSU CCC
 - Dennis Pearl
 - Greg Young
- OSU College of Agriculture
 - Steven J. Schwartz
 - Yael Vodovotz
 - David Francis
 - Ken M. Riedl
 - Jessica Cooperstone
 - Matt Teegarden

- Michael Bailey (OSU Nationwide Children's)
- Janet A. Novotny (USDA Beltsville)
- John W. Erdman, Jr. (Univ. of Illinois)
- Ed Giovannucci (HSPH)

Thank You

The James

The Ohio State University COMPREHENSIVE CANCER CENTER

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute