

Disclosure

- Stan Hazan, BSc, MPH, MBA
- Employed by NSF International
- Board member:
 - Dean's Advisory Board, University of Michigan, School of Public Health
 - Partnership for Food Safety Education
- No external funding sources

About NSF International

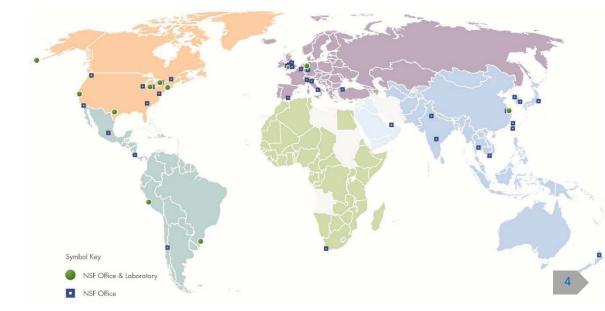
In 1944, NSF was founded as the National Sanitation Foundation at the University of Michigan School of Public Health.

Today, we are NSF International, a 501 (c) 3 non-profit with more than 2600 science professionals in 51 office and lab locations worldwide.

NSF Mission: To protect and improve human health

STANDARDS

TESTING & RISK ASSESSMENT

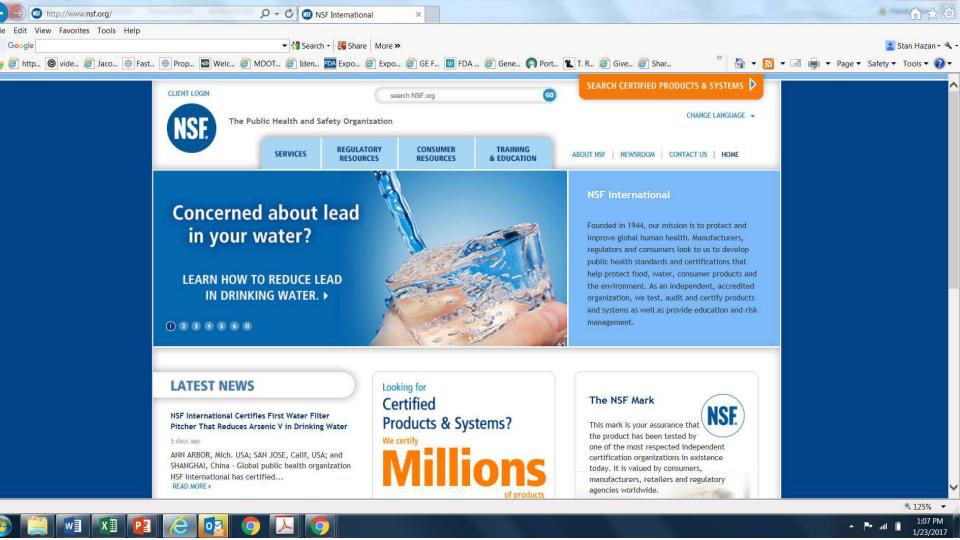

CERTIFICATION

AUDITING

ADVISORY

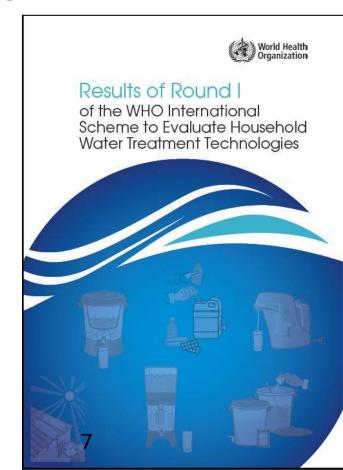
TRAINING




NSF Water Programs

Additives, Water Contact, Treatment, Performance, Risk Assessment

- Drinking Water System Components Health Effects
- Drinking Water Treatment Chemicals Health Effects
- Drinking Water Treatment Units Aesthetic and Health Effects
- Plastics and Plumbing Components Performance and Health Effects
- Prevention of Injury and Disease Associated with Building Water Systems
- Municipal Drinking Water Equipment Performance
- Recreational Water Facilities
- Wastewater Technology
- Legionella / Cooling Towers
- Biofilms
- Microcystin/Algal Blooms
- PFOS and PFOA



NSF / WHO PAHO Collaborating Centers

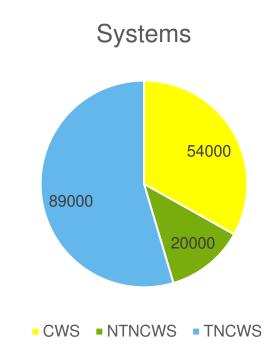
NSF is a WHO/PAHO Collaborating Center since 1996

- Water
 - Home Water Treatment for pathogen reduction
 - Airline Water Safety
 - Water Safety Plans for Utilities
- Food
 - Risk Assessment of Chemicals in Foods
- Indoor Environments
 - Exploring Clean Cookstoves Initiative role
- WHO Chemical Risk Assessment Network
 - Review of Chemical-Specific Adjustment Factors (CSAF)
- Drinking Water Conferences
 - Heterotrophic Plate Count Bacteria in Drinking Water Systems
 - Calcium Magnesium in DW and Cardiac Events (w ILSI)

NSF Environmental Programs

- Wastewater (Septic and Advanced Wastewater Treatment Technology)
- Ballast Water Treatment Technology Verification Program/CG/NRL/EPA
- EPA Safer Choice / Design for the Environment / CleanGredients
- TSCA, FIFRA, GRAS
- CA Proposition 65
- Sustainability
 - Safer Choice (NSF assisted w drafting of Guidelines)
 - Green House Gases (GHG) Certification
 - Water Sense

The Safe Drinking Water Act (SDWA)


- Enacted 1974, Amended 1986 and 1996
- Primacy grants State responsibility for compliance and enforcement
- SDWA addresses >100 drinking water contaminants, including lead and arsenic
- National Primary and Secondary Drinking Water Regulations
- Primary are enforceable, Secondary are not enforceable
 - <u>Microorganisms</u>, <u>Disinfection Byproducts</u>, <u>Inorganic Chemicals</u>, <u>Organic Chemicals</u>, Radionuclides
- Public water systems have >15 service connections, >25 people for 60 days/year.

The Safe Drinking Water Act (SDWA)

- Drinking water standards apply to water systems differently based on type and size
- Community Water Systems (~54,000) serve same people year-round.
 - Homes, apartments, condos in cities, small towns, and mobile home parks.
 - Receive Consumer Confidence Reports
- Non-Community Water Systems (~110,000) serve the public but not year-round.
 - Non-Transient Non-Community Water Systems (~20,000) serve same people >6 months/yr but not year-round, i.e. a school with own water supply.
 - Transient Non-Community Water Systems (~89,000) serve the public but not same individuals for more than 6 months, i.e. rest area or campground.

1996 SDWA Amendments - Highlights

- Consumer Confidence Reports, annually.
- Cost-Benefit Analysis for every new standard.
- Drinking Water State Revolving Fund.
- Microbial Contaminants and Disinfection Byproducts Rules.
- Operator Certification.
- Small Water Systems Assistance to Comply
- Source Water Protection & Risk Assessment Programs

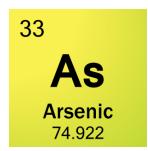
Table 2. U.S. drinking water system summary (USEPA, 2012)

System Service Population	Very Small <=500	Small 501–3,300	Medium 3,301-10,000	Large 10,001-100,000	Very Large >100,000	Total
Number of Systems	127,896	19,180	5,176	3,861	426	156,539
% Total Systems	82%	12%	3%	2%	0.3%	100%
Service Population	14,336,173	25,181,127	30,048,390	110,185,765	140,623,820	320,375,275
% Total Population	4.5%	7.9%	9.4%	34%	44%	100%

SDWA Rules, Regulations and Other Unfunded Mandates

- 1976 Drinking Water Standards (22 contaminants)
- 1983 Total Trihalomethanes (TTHMs)
- 1987 Phase 1 Volatile Organic Chemicals
- 1989 Total Coliform Rule / Surface Water Treatment Rule
- 1991 Phase 2 Synthetic Organic / Inorganic Chemicals
- 1991 Lead Copper Rule
- 1996 Information Collection Rule
- 1998 Stage 1 Disinfection By-Products Rule
- 1998 Interim Enhanced Surface Water Treatment Rule
- 1999 Unregulated Contaminant Monitoring Rule
- 2000 Radionuclides Rule
- 2001 Arsenic Rule
- 2002 9/11 Vulnerability Assessments, Emergency Response Plans
- 2003 Stage 2 Disinfectants and DBP Rule
- 2003 Long Term 2 Enhanced SWT Rule
- Cybersecurity Requirements, and more

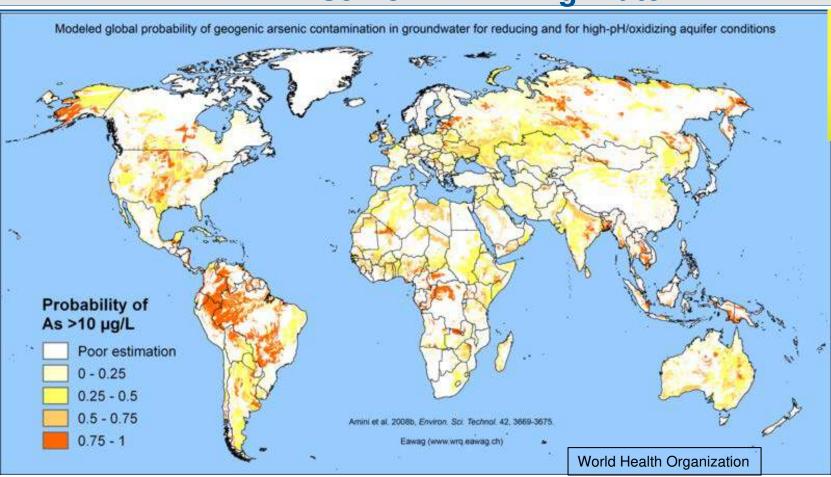
Violations and Compliance by System Type


System Type	Health-Based Violations	Systems in Violation	Population (M) in Violation	Total Systems by Type	Total Population (M) by Type	GPRA- System Basis	GPRA- Population Basis
CWS	9,906	4,682	22.90	50,808	303.36	91%	92%
NTNCWS	2,184	1,354	0.40	18,225	6.34	93%	94%
TNCWS	5,494	4,076	0.55	84,105	12.76	95%	96%
Total	17,584	10,112	23.85	153,138	322.45	93%	93%

https://echo.epa.gov database contains info on Public Water Systems by Size, Type, Source, State, City, Violations, Enforcements, Inspection, Sanitary Survey)

Arsenic in Drinking Water

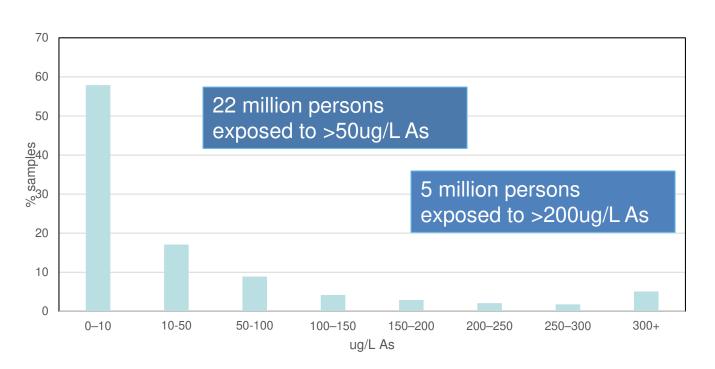
Arsenic in Drinking Water


- Arsenic comprises 0.00015% of the Earth's crust
- 53rd most abundant element
- Common valence forms III and V
- Toxicity = skin, lung and bladder cancer risk, neuropathies
- Found in surface & ground waters, rice, apples and other Ag foods
- US EPA DW MCL = 10ug/L, MCLG = 0ppb
 - Drop from 50ug/L in 2001 resulted in significant SDWA non-compliances
- Surface waters less contaminated with As
- Centralized systems use Coag/Floc (Fe, Al) for >90% reduction
- Decentralized and individual wells have greater challenges
 - Breakeven point ~ 120/200 connections for RO / Alumina Mn POUs
- POU RO and manganese coated activated alumina effective for As(V)
- POU RO not effective for As(III) which must be oxidized to As(V)

As Arsenic

74.922

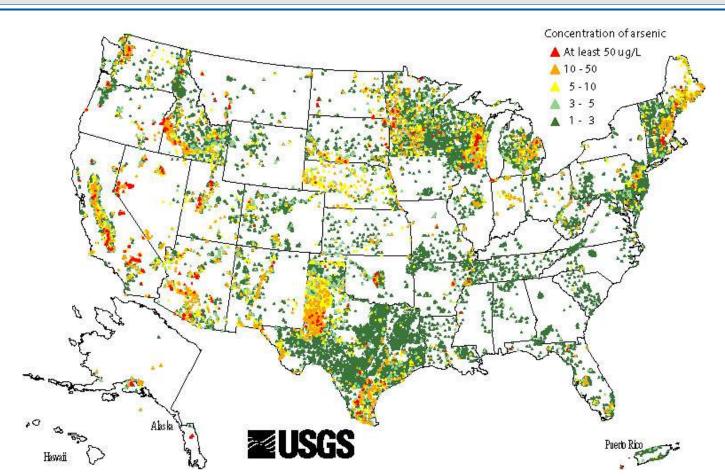
Arsenic in Drinking Water


As Arsenic

74.922

Arsenic in Bangladesh Drinking Water

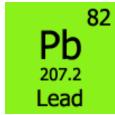
Bangladesh - Proportion of Wells with Arsenic Levels (%)



As As

Arsenic 74.922

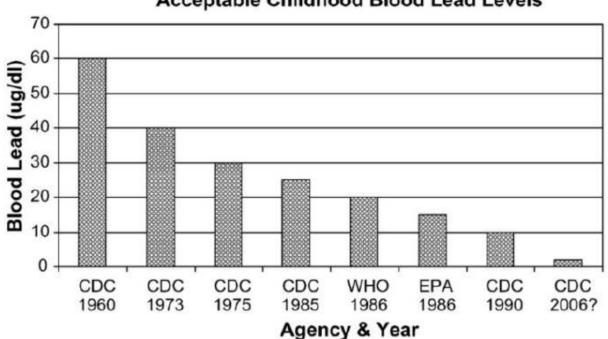
Arsenic in USA Groundwater

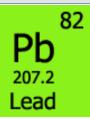


As Arsenic

74.922

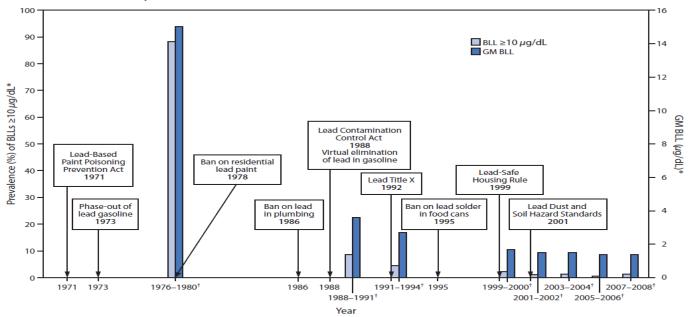
Lead in Drinking Water





Public Health Agencies' Positions on BLL vs Time

Fig. 1



Blood Lead Levels over Time

FIGURE. Timeline of lead poisoning prevention policies and blood lead levels in children aged 1–5 years, by year — National Health and Nutrition Examination Survey, United States, 1971–2008

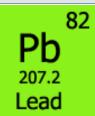
Abbreviations: BLL = blood lead level; GM = geometric mean; NHANES = National Health and Nutrition Examination Survey.

Sources: Mahaffey KR, Annest JL, Roberts J, Murphy MS. National estimates of blood lead levels: United States (1976–1980). N Engl J Med 1982;307:573–9.

Jones R, Homa D, Meyer P, et al. Trends in blood lead levels and blood lead testing among U.S. children aged 1 to 5 years: 1998–2004. Pediatrics 2009;123:e376-85.

National Health and Nutrition Examination Survey, 2000–2008. Available at http://www.cdc.gov/nchs/nhanes.htm. Accessed July 17, 2012.

Pb 207.2 Lead


^{*} National estimates for GM BLLs and prevalence of BLLs ≥10 µg/dL, by NHANES survey period and sample size of children aged 1–5 years: 1976–1980: N = 2,372; 1988–1991: N = 2,232: 1991–1994: N = 2.392: 1999–2000: N = 723: 2001–2002: N = 898: 2003–2004: N = 911: 2005–2006: N = 968: 2007–2008: N = 817.

[†] NHANES survey period.

Lead in Drinking Water

- High industrial usage, but declining
- Toxicity = neurological development impairment, high blood pressure
- US EPA MCL TT = 15ppb, MCLG = 0ppb
- Lead Copper Rule monitoring (90th percentile < 15ppb)
- Majority of lead sources in drinking water from premise plumbing materials
- Consumer Confidence Reports tracking and reporting
- Corrosion Control Treatment Technique pH adjustment, phosphates, silicates
- POU and POE treatment technologies
- Lead Service Line replacements
- Soluble vs Particulate Lead

Factors Influencing Lead in Water

Factor	Distribution Systems	Premise Plumbing
Source Water	Low impact	Low impact

Low impact

Warmer

High

Low

2.1 cm²/mL

Metal or plastic tubing, fittings, solder,

valves, faucets, water heaters.

Intermittent/stagnant

82

Lead

Low impact Low impact

Coag/Floc, Disinfection, pH Treatment Additives adjustment, Corrosion Control, Fluoride

0.26 cm²/mL

Low

High

Distribution Materials /

Surface area to volume

Equipment

Flow Rates

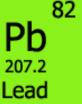
Temperatures

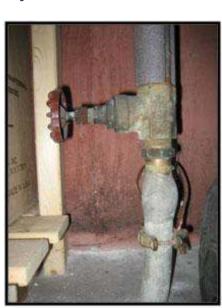
Water Velocity

Disinfectant

Constant Cooler

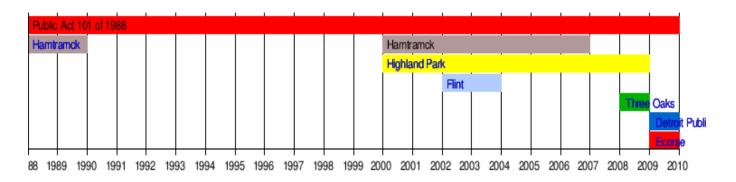
coatings, concrete, process media,

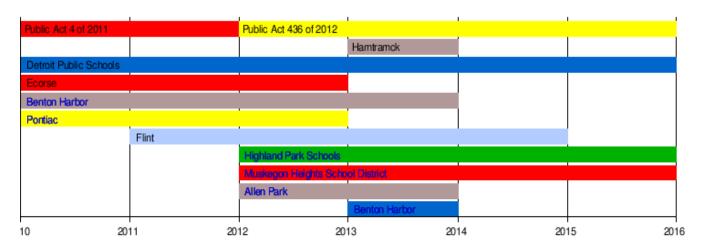

pipes, gaskets, sealing materials,


Pumps, valves, meters, paints,

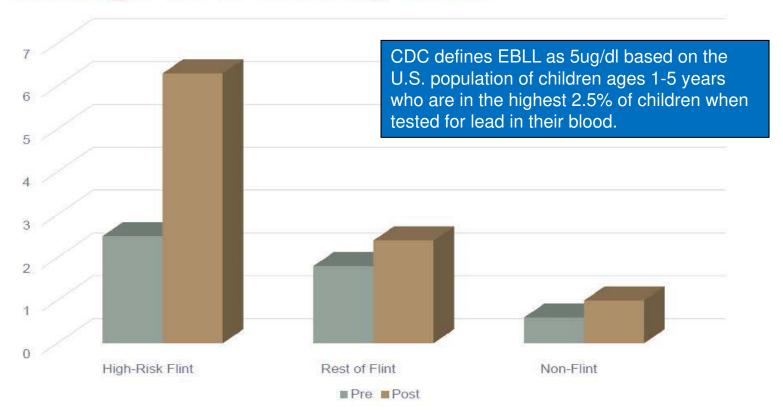
service lines, appurtenances

Lead Service Lines


- More than 1 million lead service lines in the country
- Flint has highlighted the problem of "where are they?"
- Many utilities have ongoing replacement programs.
- Building owners reluctant to replace service lines on their property.
- Partial replacement does not usually solve problem.



Historical: Michigan Cities w Emergency Financial Managers



Flint: Elevated Blood Lead Levels Detected in Flint by Dr. Mona Hanna-Attisha

Change in % EBL by area

Distribution Systems are Ecosystems

Element	%
Fe	76.59
Ca	10.48
Р	4.61
Al	3.95
Mg	1.45
Si	1.10
Mn	0.87
As	0.61
Zn	0.16
Cu	0.12
Pb	0.05

Flint Water Crisis - Timeline

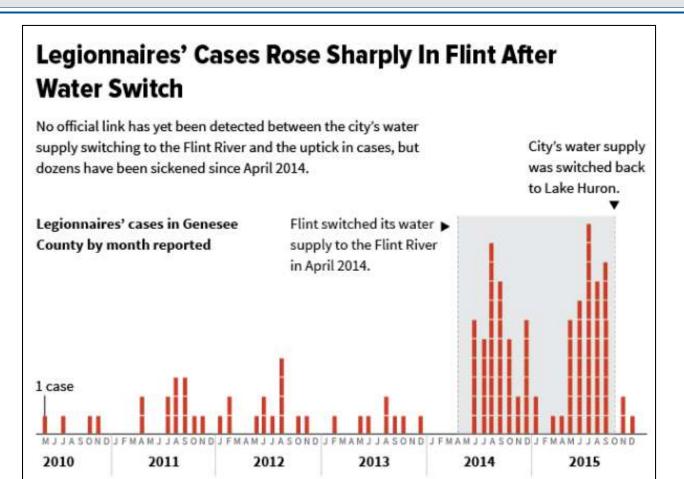
- 2011
 - EFM installed and financial decision made to switch water supply
- 2013
 - Flint informs Detroit they will build own regional water system by 2016
- 2014
 - Flint begins using Flint River and shuttered Treatment Plant
 - Immediate complaints of color, taste, odor / rashes, etc
 - 3 boil water advisories due to coliform bacteria detections
 - GM engine plant stops using Flint water because it rusts parts
- 2015
 - Very high DBPs in water. Detroit offers to reconnect Flint.
 - State pledges \$2M for fixes and Flint promises to spend \$2.3M for fixes
 - Flint declares water has improved and it meets all regulatory requirements
 - Hurley Medical Center finds high blood lead levels in children
 - Flint urged to stop using Flint River water. State insists water is safe.

Flint Water Crisis - Timeline

2015

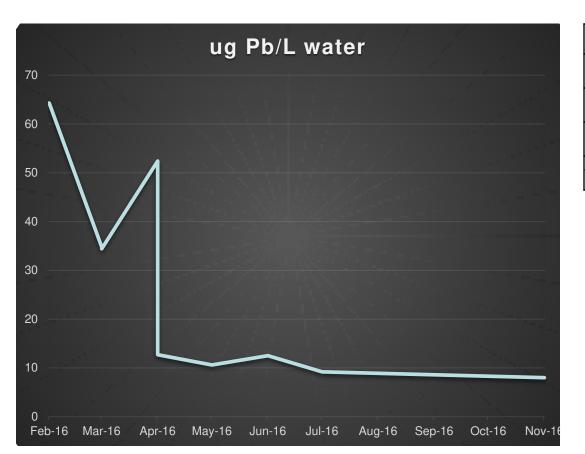
- Gov. Snyder pledges to take action in response to high blood lead levels.
- Gov. pledges \$1M for filters, bottled water and testing of Flint public schools
- MI legislature and Governor approve \$9.4M in aid and \$6M for return to Detroit water.
- Voters elect new Mayor. MI DEQ Director resigns

2016


- Governor declares State of Emergency and activates National Guard
- Federal aid provided and EPA takes over sampling
- Obama signs emergency declaration activates FEMA and HHS
- Lead service line replacement program funded and begins
- WRDA bill passes and provides \$170M to Flint for all types of upgrades/remediation
- State pushes for end of bottled water distribution unless OK'd by physician

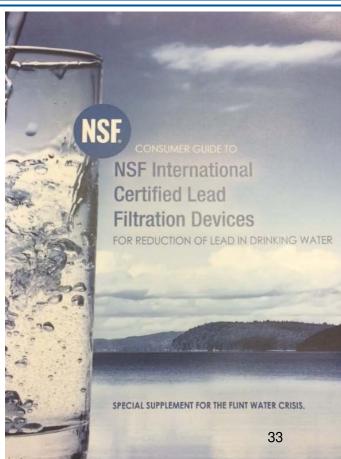
2017

Average Pb levels in drinking water Dec 2016 = 8 ppb



Flint Water Crisis – 2016 Timeline

Analysis of Flint Waters



Average (First Draw)	10.6 ppb
90th Percentile (First Draw)	26.8 ppb
Maximum (First Draw)	158 ppb
Maximum (Any sample)	1051 ppb
Total No. of Samples	271

NSF Certified Filters Specified for Flint Residents

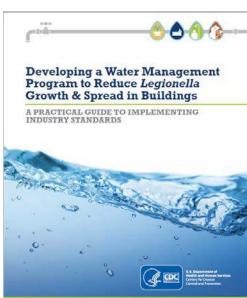
- Influent waters exceeded 150ppb ratings
- Particulate lead responsible for high numbers
- Filters performed to 1 ppb or less
- Filters certified to NSF Std 42/53
- Flint residents advised to keep using filters

Water Infrastructure Report Card

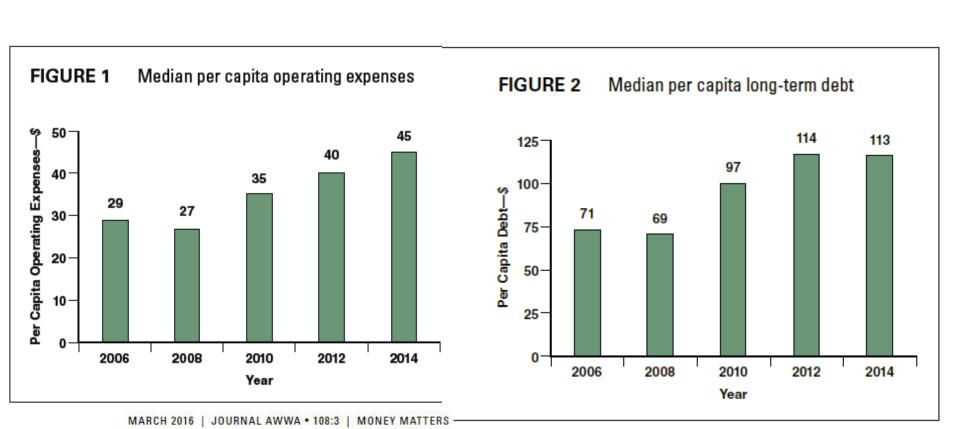
- American Society of Civil Engineers' "Report Card" = D+
- Water Main Breaks and Leaks are health issues too
- \$1000B/25 yrs needed Lead Service Lines, CSOs, Wastewater, Storm Water 2012 AWWA report "Buried No Longer: Confronting America's Water Infrastructure Challenge."

Table 2. U.S. drinking water system summary (USEPA, 2012)

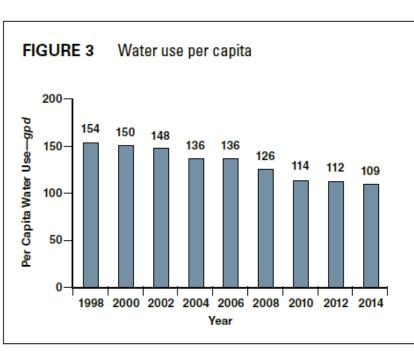
System Service Population	Very Small <=500	Small 501–3,300	Medium 3,301-10,000	Large 10,001-100,000	Very Large >100,000	Total
Number of Systems	127,896	19,180	5,176	3,861	426	156,539
% Total Systems	82%	12%	3%	2%	0.3%	100%
Service Population	14,336,173	25,181,127	30,048,390	110,185,765	140,623,820	320,375,275
% Total Population	4.5%	7.9%	9.4%	34%	44%	100%


Water Utility Issues

- Costs of regulatory compliance
- Cost transfer (grants to loans (SRF))
- O&M costs increasing rapidly
- Rising rates / affordability
- Water age / turnover / chlorine residual / biofilm
- Legacy materials in the distribution system
- Lead service lines, brass fittings, solder in homes



Other Drinking Water Issues in the News


- Declining population centers / Environmental justice issues
- Water conservation / cost of drinking water / affordability of water
- PFOS/PFOA (Perfluorinated Compounds)
- Agricultural Nutrient runoff Harmful Algal Blooms Cyanotoxins
- Emerging contaminants including trace pharmaceuticals
- Fracking/Drilling impacts on aquifers
- Legionella in Premise Plumbing and in Cooling Towers

Trends in Costs of Municipal Water

Trends in Use and Costs of Municipal Water

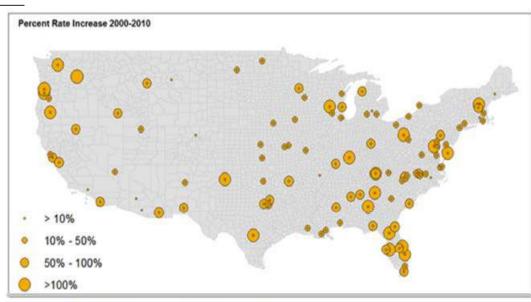


Figure 1: Water Rate Increases from 2000 - 2010

Key Take Aways

- Arsenic is a natural contaminant in groundwater that will persist
- Lead is a man made contaminant problem that will eventually be reduced
- Infrastructure problems will continue to persist
- Cost of drinking water will increase as will opportunities to cut corners
- Public trust and confidence issues New LCR
- Smaller utilities are at higher risk
- Expect more "self protection" in the way of POU/POE
- Flint can happen anywhere!

