IUNS 21st ICN International Congress of Nutrition "From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

www.iuns-icn2017.com info@iuns-icn2017.com

TUNS

Methods to collect and compare data across geography

Associate Professor Regina Mara Fisberg, MsC, PhD

University of São Paulo School of Public Health

Session: "Understanding Dietary Patterns: A Step toward Devising a Global Nutrition Strategy"

IUNS 21st ICN International Congress of Nutrition "From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

www.iuns-icn2017.com info@iuns-icn2017.com

IUNS INTERNATIONAL UNION O

Conflict of Interest Disclosure

I have no conflict of interest to report in relation to this presentation.

Insights on "diet"

"Diets are complex exposures with innumerable and sometimes poorly characterized components that are consumed in varying amounts and combinations."

Dietary variables: the entire population is "exposed" to some degree.

Diet is dependent of exposure time, of individual

dietary habits and food composition.

Satija A. Adv Nutr 2015

Systematization of dietary intake data

HARVARD SCHOOL OF PUBLIC HEALTH SPECIAL PRENATAL STUDY

First dietary assessments

221 LONGWOOD AVENUE, BOSTON, MASSACHUSETTS
One Complete Day's Record of Food Eaten
Directions:
Orange juice or fruit: State number of oranges and size used.
Other fruit: State kind, number or size of serving (1 small sauce dish = 1/2 measuring cup, 4 rounding theps." = 1/2 cup, 16 level theps. = 1 cup).
Conal: State amount as rounding theses. or in terms of measuring cup.
Bread: State number of slices, and if purchased as sliced bread. If not, state thickness as 1/4 or 1/2 inch or whatever it is.
Butter: Record as level tsps. (1 par = 1 level tsp. 1).
Egg: Check'ss to whether whole egg or yolk only.
Baten: Number of slices-indicate whether long (full length) slices or 1/2 slices.
Milk: Amount on cereal-state in terms of measuring cup. If top milk or cream used, cross out milk. State cream light, medium, or heavy. Cup refers to measuring cup. 1 ordinary drinking glass = 34 cup. 1 tall glass (iced tea glass) = 114 cup. Where it states milk or cream, cross out one not used.
Sugar: Give as level tsps.
Other foods: Record as accurately as possible in ordinary household measures any foods earch not listed.
Must or Fish: 1 small serving meat or fish = 1 oz. = 2 tbsps. 1 average serving meat or fish = 3 oz. 1 large serving meat or fish = 4 oz.
Vegetables: Record in rounding theps. (1 ordinary small saucer of vegetables = 1/2 cup = 4 rounding theps.)
Dessert:
Average serving = $\frac{1}{2}$ cup. Milk or sauce, etc., added should be recorded and amount stated.
* Tablespoon = thep.

and the second								
Name								
Address								
Read directions carefully before filling out the following:								
Breakfast: Timea. m.								
Orange								
Cereal — Kind								
Bread - Kind								
Butter - Amounttsps.								
Egg								
Bacon No. of slices. Sugar on cereal tsps.								
Milk								
Cocoa cups. Other beverage cups								
Is cocoa made with milk?								
Sugar in cocoa or other beveragetsps.								
Milk or cream added to cocoa or other beverage								
Other foods ezten								
Аточис.								
Between Breakfast and Noon Meal: Time								
Foods caren Amounts								
Amounts								
(Include ice cream, candy, sodas, etc.)								
а 1								

FIG. 3. First and second pages of four-page form which is filled out by the subject on three consecutive days.

Burke. J Am Diet Assoc 1947

Systematization of data

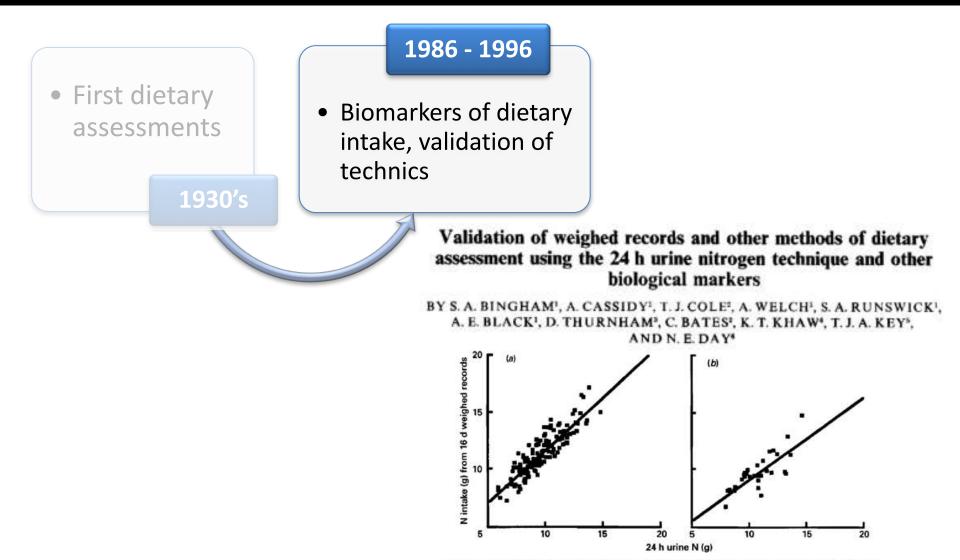
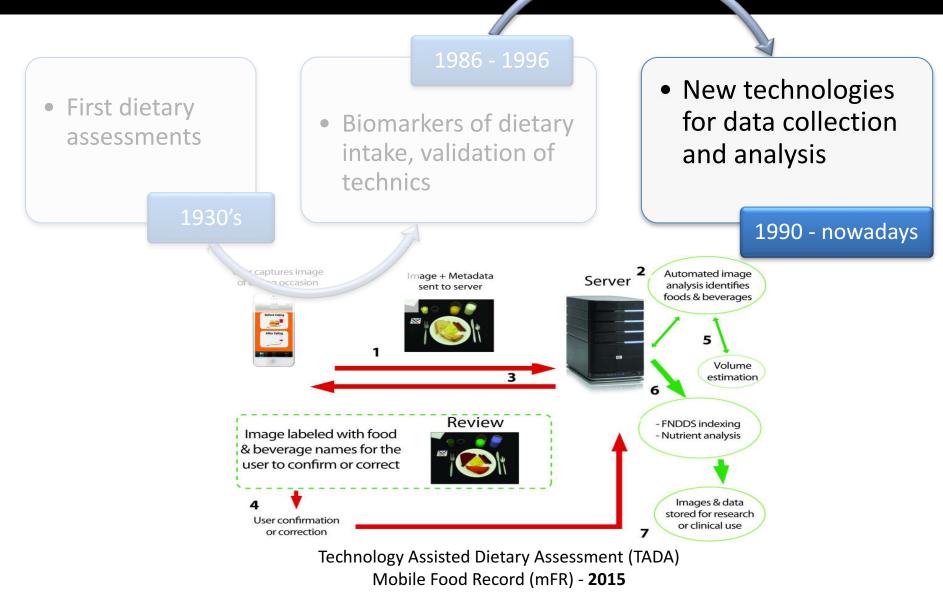
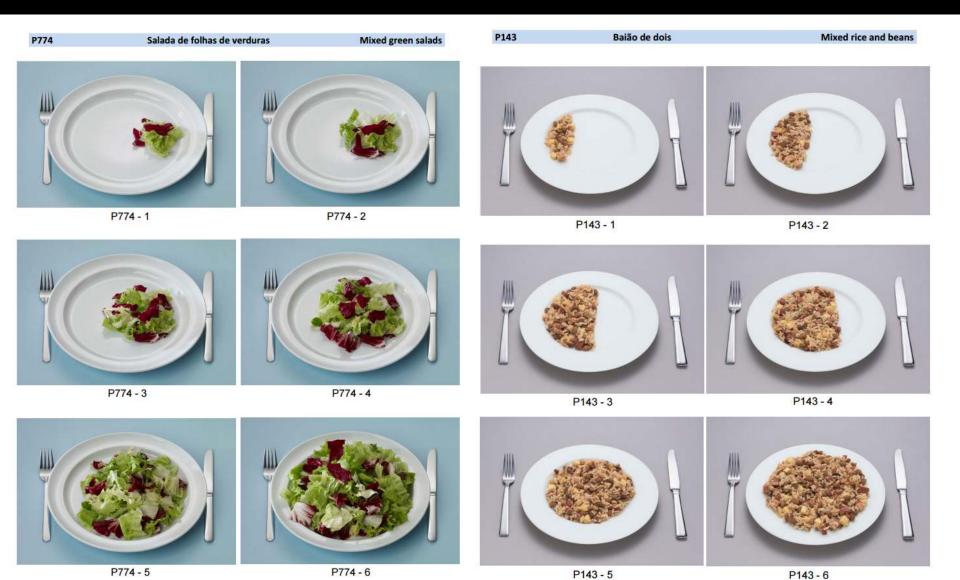
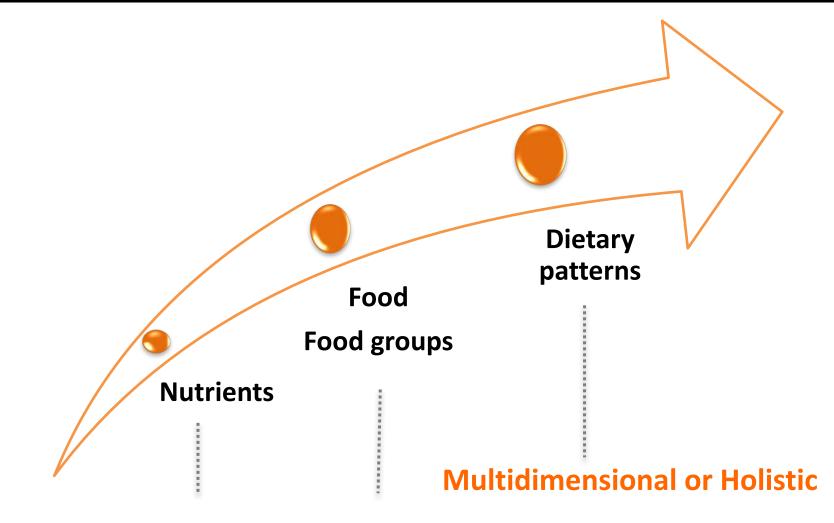



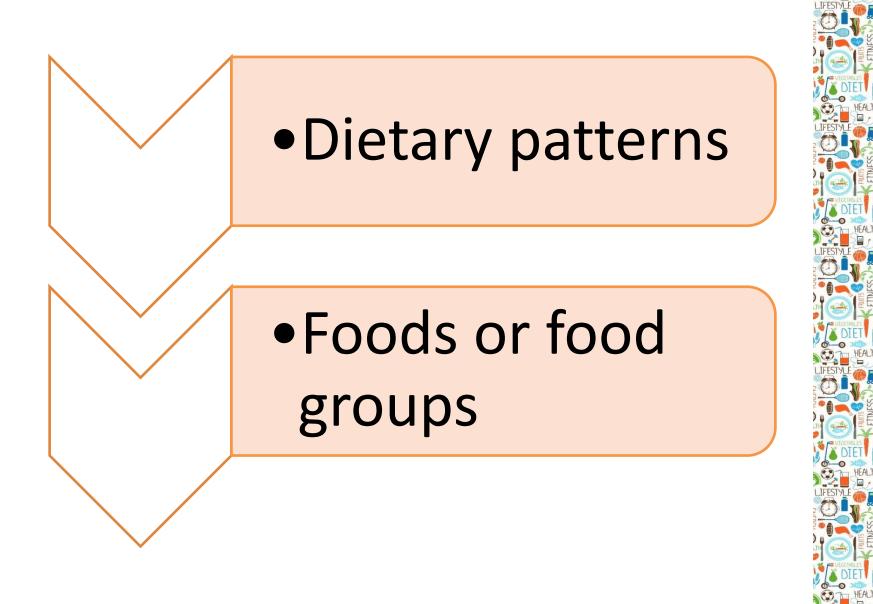
Fig. 3. The relationship between 24 h urine nitrogen and dietary nitrogen from 16 d weighed records in individuals from (a) the lower four quintiles and (b) the top quintile of the urinary nitrogen: dietary nitrogen ratio distribution. For details of subjects and procedures, see pp. 532-534.


Bingham SA. Br J Nutr 1995

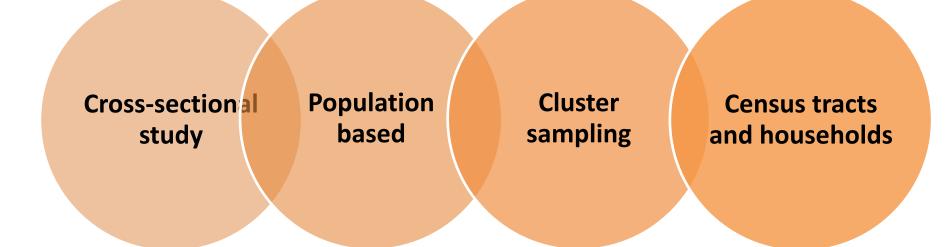
Systematization of data


JMIR mHealth uHealth 2015

Systematization of data

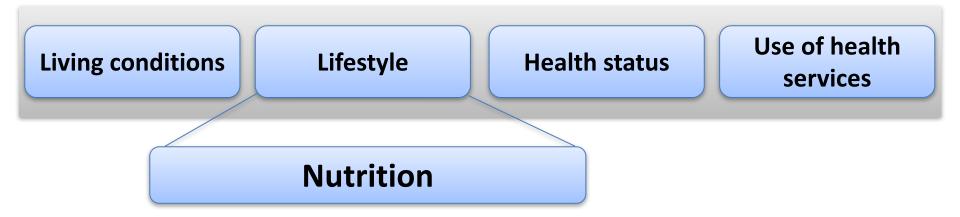

Crispim SP, Fisberg RM. Manual Fotográfico de Quantificação Alimentar 2016

Approaches in dietary research

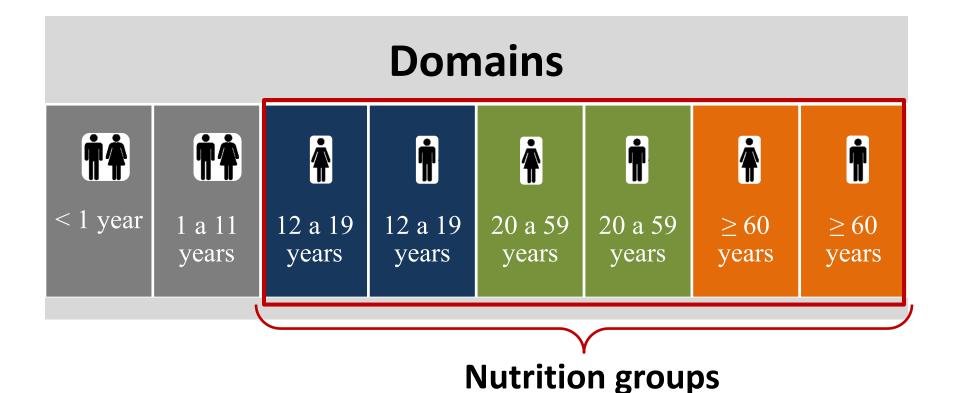


Traditional or reductionist

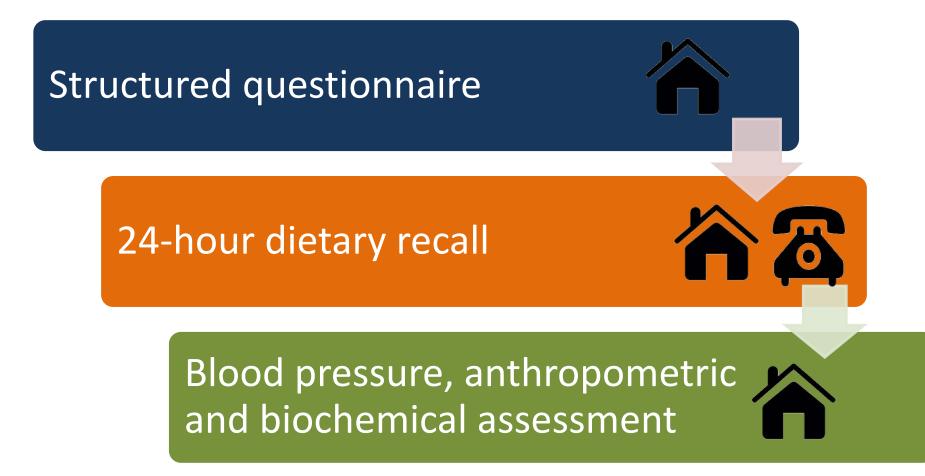
Approaches in dietary research

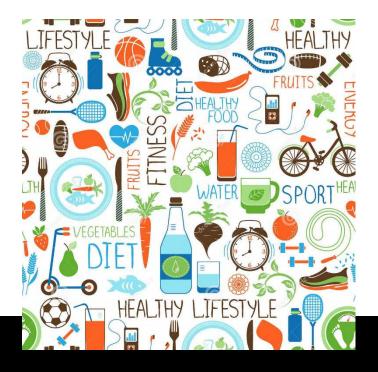


Health Survey of São Paulo - ISA



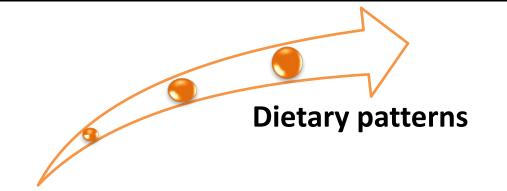
ISA-Nutrition





Demographic stratification in ISA-Capital

Flow of data collection

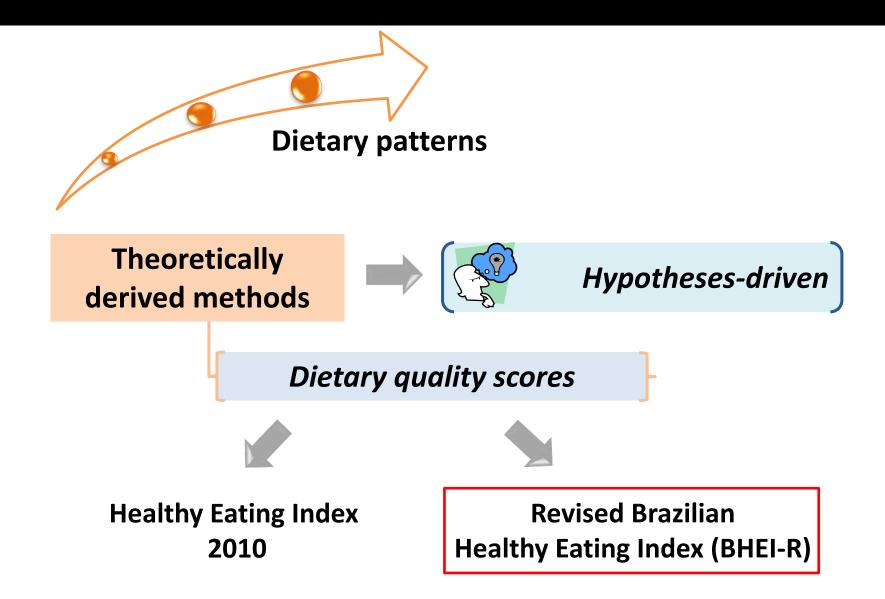


Nutrition research

DIETARY PATTERNS - MONITORING

Dietary patterns – Analysis

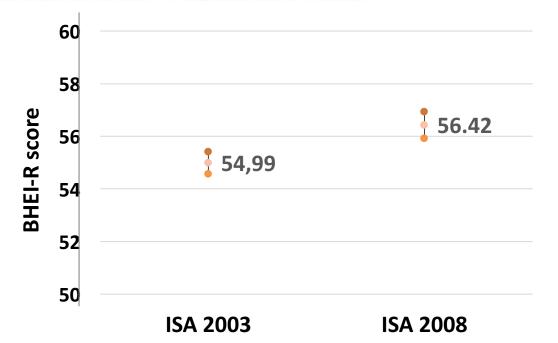
Theoretically derived methods


Empirically derived methods

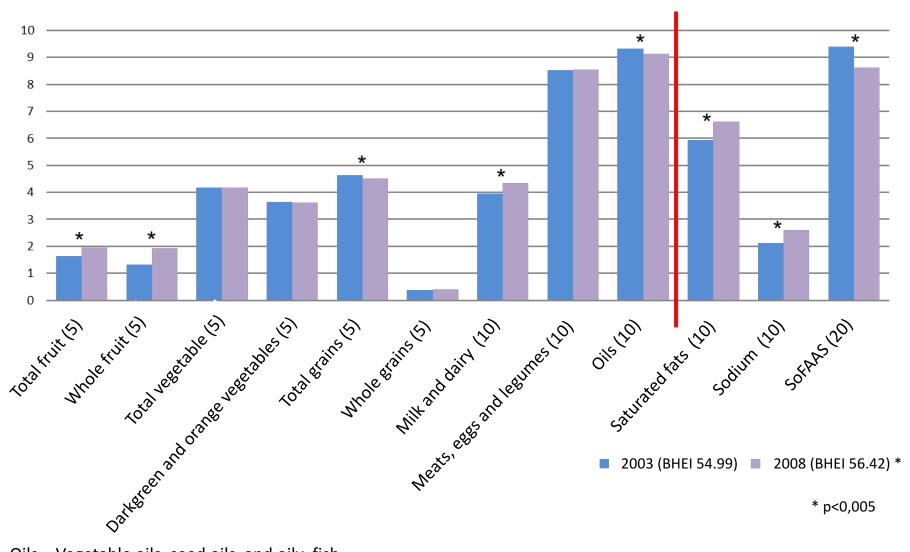
Ocké MC. Proc Nutr Soc 2013

Dietary patterns – Analysis

Ocké MC. Proc Nutr Soc 2013

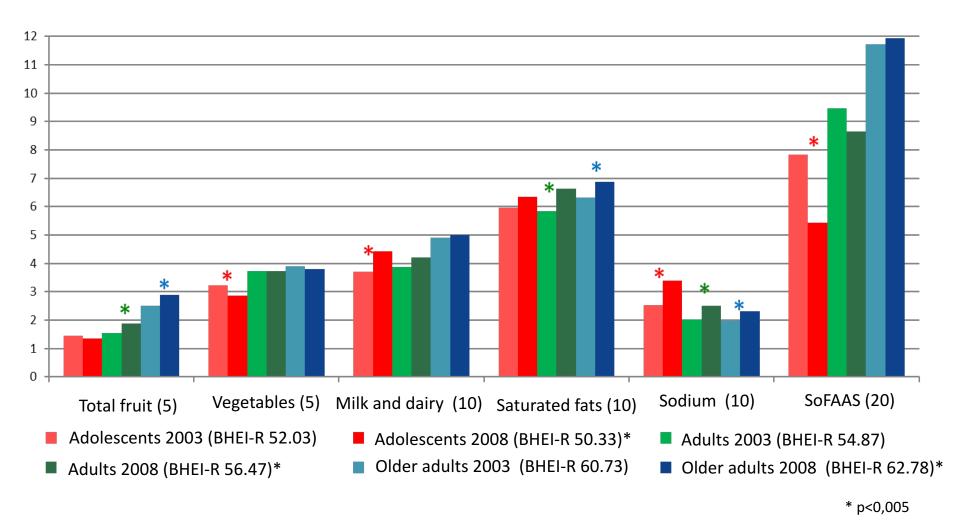

Brazilian Healthy Eating Index in São Paulo

Preventive Medicine Reports 4 (2016) 391-396



Trends in diet quality among adolescents, adults and older adults: A population-based study☆·☆☆·★

Samantha Caesar de Andrade PhD^{a,*,1}, Ágatha Nogueira Previdelli PhD^{a,2}, Chester Luiz Galvão Cesar PhD^{b,3}, Dirce Maria Lobo Marchioni PhD^{a,4}, Regina Mara Fisberg PhD^{a,5}


Comparison of means of BHEI-R components of the population of São Paulo in 2003 and 2008. ISA-Capital

Oils = Vegetable oils, seed oils and oily fish SoFAAS = total calories from solid fat, alcohol and added sugar

Andrade SC, Fisberg RM. Prev Med 2016

Comparison of means of BHEI-R components and final score according to age group of residents in São Paulo in 2003 and 2008. ISA-Capital

Andrade SC, <u>Fisberg</u> RM. *Prev Med* 2016

Factors associated with BHEI-R identified by multiple regression analysis for participants of ISA-Capital 2003 and 2008

Independent variable		2003		2008	
		β	р	β	р
Energy intake (Kcal)		-0.0021	<0.001	-0.0013	0.002
Age group	Adults ^a	2.4469	<0.001	6.1154	<0.001
	Older adults ^a	7.1968	<0.001	10.7202	<0.001
Smoking habits	Former smoker ^b	-2.9523	<0.001	-3.0910	0.003
Head of household education (years)		-0.0664	0.032	-0.1550	0.155

^a In relation to adolescents.

^b In relation to never smoked.

2003 Adults 1 2.4 points Older adults 1 7.2 points

Andrade SC, Fisberg RM. Prev Med 2016

Global dietary quality scores

	Score based on greater consumption of ten healthy dietary items	Score based on lesser consumption of seven unhealthy dietary items	Score based on 17 dietary items
Global	44·0 (10·5)	52.1 (18.6)	51·9 (9·3)
Sex			
Men	42·4 (10·5)	50.6 (18.8)	50·3 (9·4)
Women	46.0 (10.6)	53.8 (18.5)	53.7 (9.3)
p value*	<0.0001	<0.0001	<0.0001
Age, years			
20–29	36.0 (10.0)	45·8 (18·5)	44.0 (9.4)
30-39	39.4 (10.3)	46.3 (18.6)	46.5 (9.6)
40-49	42·2 (10·7)	47.9 (18.7)	49.0 (9.7)
50-59	4 <mark>4·4 (10</mark> ·7)	50.4 (18.4)	51·5 (9·4)
60–69	45.9 (10.7)	53-2 (18-1)	53.6 (9.0)
70-79	45.6 (10.8)	54.0 (18.0)	53.7 (8.9)
≥80	44·7 (10·7)	54·2 (18·0)	53·2 (8·9)
p value for trend*	<0.0001	<0.0001	<0.0001
Country income level			
High (n=47)	47.0 (9.3)	37.4 (11.2)	48·6 (8·1)
Upper middle (n=53)	45.2 (11.3)	46·2 (12·8)	50.1 (8.7)
Lower middle (n=51)	40.9 (10.9)	55.0 (15.3)	51.1 (9.4)
Low (n=36)	42.9 (9.6)	75·9 (12·5)	59·9 (7·3)
p value for trend*	0.0005	<0.0001	0.0006

Data are mean (SD). Possible range of each score is from 0 (less healthy) to 100 (more healthy). *p values for differences by sex or across ordinal categories of age or country income were estimated using hierarchical regression analysis accounting for age-sex distribution. Age, sex, and country income (high, ≥US\$12 475; upper middle, US\$4037-12 474; lower middle, US\$1025-4036; low, <US\$1024) were mutually adjusted when assessing statistical significance of each.

Table 2: Global dietary patterns among men and women in 187 countries in 2010

Women

Older adults

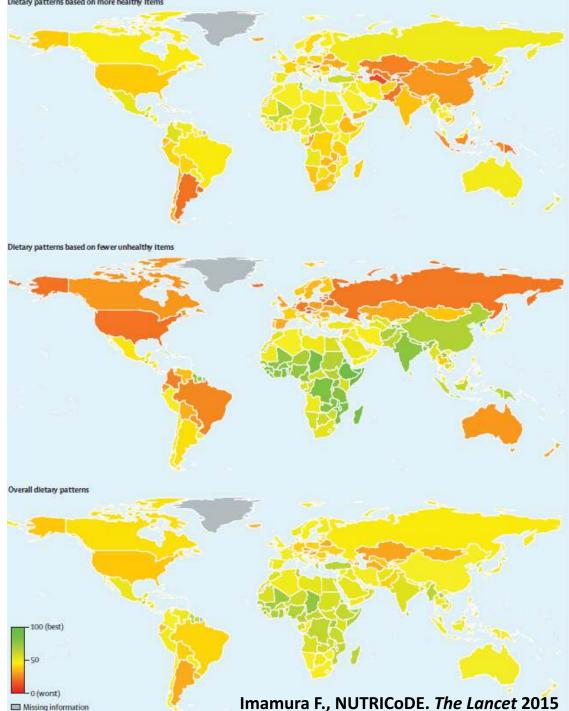
Lower income

Imamura F., NUTRICoDE. The Lancet 2015

Dietary patterns based on more healthy items

Global dietary pattern

Dietary pattern based on more healthy items

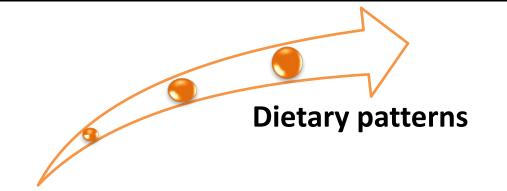

Whole grains, Fruit, Vegetables, Fish, Nuts and seeds, Beans, Milk, Dietary fiber, Polyunsaturated fat, Omega-3 fat

Dietary patterns based on fewer unhealthy items

Sugar-sweetened beverages, Processed meats, Unprocessed red meats, Saturated and Trans fat, Cholesterol and Sodium

Overall dietary patterns

Values represent degrees of adherence to each dietary pattern, ranging from 0 (least healthy) to 100 (most healthy)

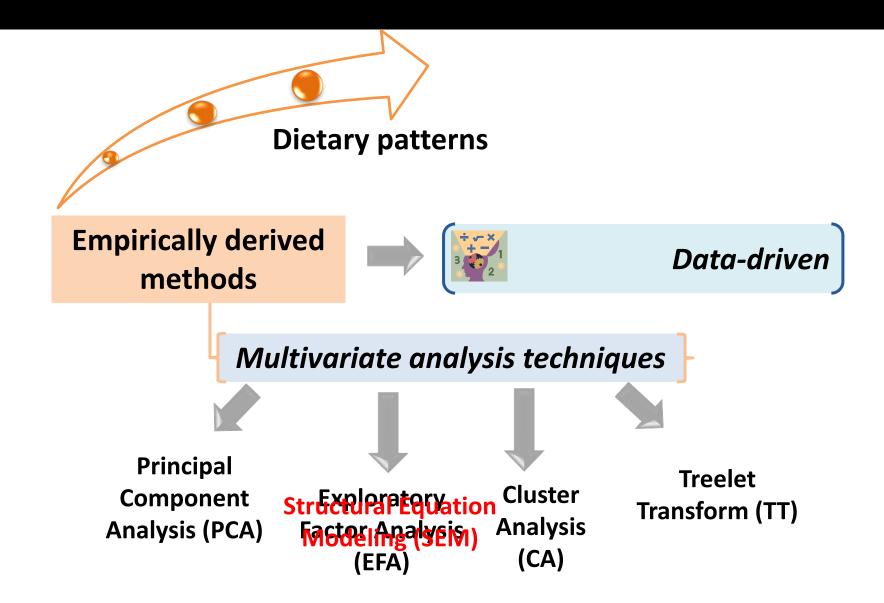


Nutrition Research

DIETARY PATTERNS - OUTCOMES

Dietary patterns – Analysis

Theoretically derived methods

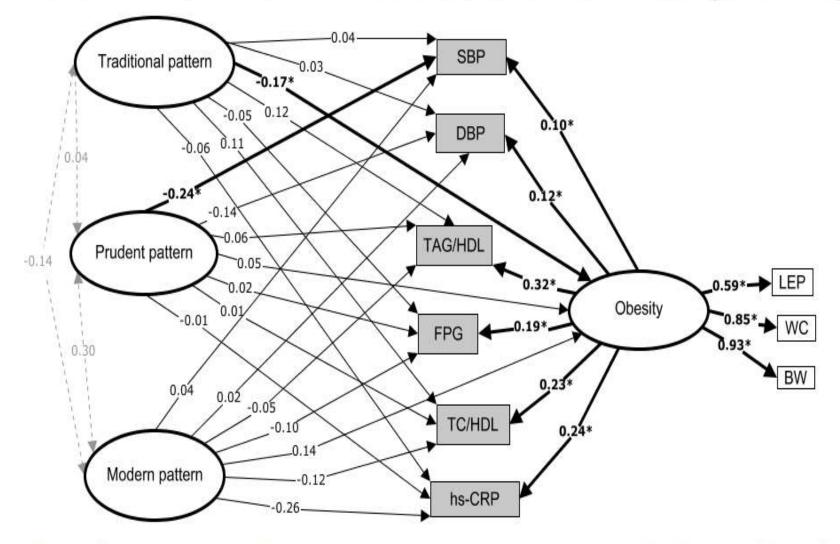
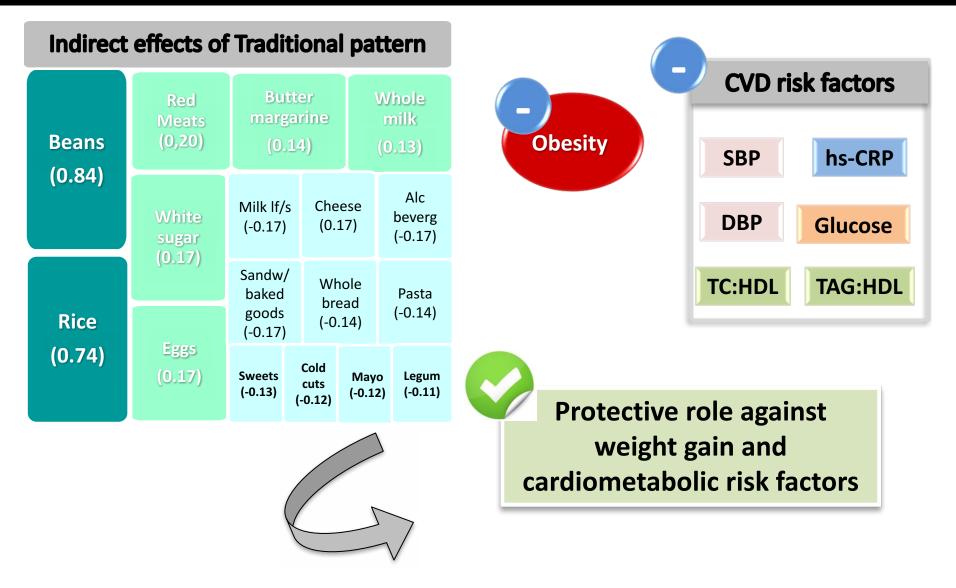

Empirically derived methods

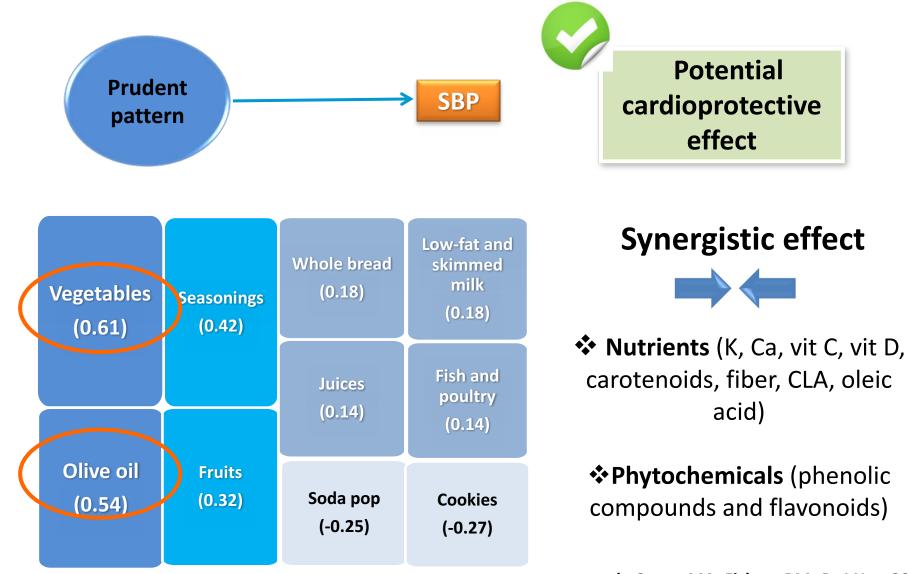
Ocké MC. Proc Nutr Soc 2013

Dietary patterns – Analysis

Examining associations between dietary patterns and metabolic CVD risk factors: a novel use of structural equation modelling

Michelle Alessandra Castro¹*, Valéria Troncoso Baltar², Dirce Maria Marchioni¹ and Regina Mara Fisberg¹


Fig. 2. Structural equation model diagram with standardised estimates for the relationship between dietary patterns and metabolic CVD risk factors, Health Survey of São Paulo, Brazil, 2008–2011. * Standardised coefficients significant at the critical value of 0.05. SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; hs-CRP, high-sensitivity C-reactive protein; LEP, leptin; WC, waist circumference; BW, body weight.

de Castro MA, Fisberg RM. Br J Nutr 2016

Dietary pattern and metabolic CVD risk in São Paulo

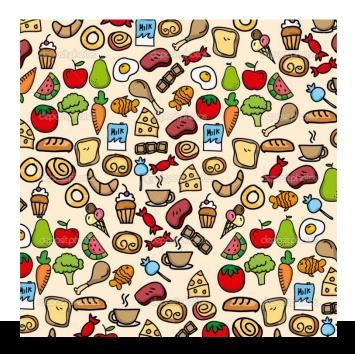
Dietary pattern and metabolic CVD risk in São Paulo

de Castro MA, Fisberg RM. Br J Nutr 2016

Global dietary patterns and CVD

References	Year	Event	BB	95% CI	% Weigh
Cohort study CHD					
Hu et al.(35)	2000	CHD -	1-43	1.01, 2.02	9-4
Osler et al.(23)	2002	CHD	1-04	1-01, 1-07	26-1
Cai et al.(37)	2007	CHD	1-58	0-81, 3-08	3-3
Shimazu et al.(25)	2007	CHD	1-50	0.95, 2.37	6-3
Guallar-Castillon et al. (26		CHD		0-60, 1-24	8-7
Maruyama et al.(27)	2012	CHD	0-72	0-48, 1-08	7-5
Maruyama et al. ⁽²⁷⁾	2012	СНО	0-88	0-73, 1-06	17-5
Stricker et al. ⁽²⁸⁾	2012	CHD	0-91	0.76, 1-08	17-9
Chen et al. ⁽⁴³⁾		And the second se			
Chen et al."	2012	CHD t	• 1-94	0.95, 3.98	2-9
Subtotal ($l^2 = 59-4\%$; P	= 0.012)	4	> 1-03	0.90, 1-17	100-0
Cohort study-stroke					
Fung et al. ⁽³⁶⁾	2004	Stroke -	• 1-56	1-05, 2-32	10-0
Cai et al.(37)	2007	Stroke	- 0.76	0.48, 1.20	8-2
Shimazu et al.(25)	2007	Stroke	1-14	0.71, 1-84	7.5
Maruyama et al.(27)	2012	Stroke	- 0-97	0.74, 1-27	16-6
Maruyama et al. ⁽²⁷⁾	2012	Stroke	1-03	0.75, 1-41	13-8
Stricker et al. ⁽²⁸⁾	2012	Stroke	1.11	0.81, 1.52	13-8
Chen et al. ⁽⁴³⁾		2010 A 1911			4-6
Judd et al. ⁽⁴⁴⁾	2012	Stroke	0-74	0-39, 1-41	
Judd et al.	2013	Stroke	• 1-30	0.97, 1.75	14-8
Chan et al.(30)	2013	Stroke -	0-60	0-32, 1-13	4-7
Chan et al.(30)	2013	Stroke	1-05	0.59, 1-87	5-5
Subtotal (1 ² = 27-6%; P	= 0-190)	<	> 1-05	0.91, 1-22	100-0
Case-control study					
Martinez-Ortiz et al.(45)	2006	AMI	→ 3-53	1-98, 6-30	18-1
lqbal et al. ⁽⁴⁶⁾	2008	CHD		1.21, 1.51	43-8
Guo et al.(47)	2013	AMI	1-36	1.09, 1.69	37-9
Subtotal (1 ² = 80-5%; P				1.17, 2.21	100-0
	= 0.000)			1.17, 2.21	1004
Cohort study CVD					
Harriss et al.(24)	2007	Total CVD	- 0-91	0.70, 1-18	25-2
Panagiotakos et al.(39)	2008	Total CVD	1-32	1.05, 1.66	27-6
Heidemann et al.(40)	2008	CVD mortality	1-22	1-01, 1-48	30-5
Hsiao et al.(29)	2013	Total CVD	2-28	1-00, 5-21	5-8
Zazpe et al. ⁽³¹⁾	2014	Total CVD	- 0-78	0.44, 1.37	10-7
Subtotal (1 ² = 56-9 %; P:		<	> 1-14	0.92, 1-42	100-0
Note: weights are from ra	andom e	ects analysis			
		- B- P			
		0-159 1	6-3		

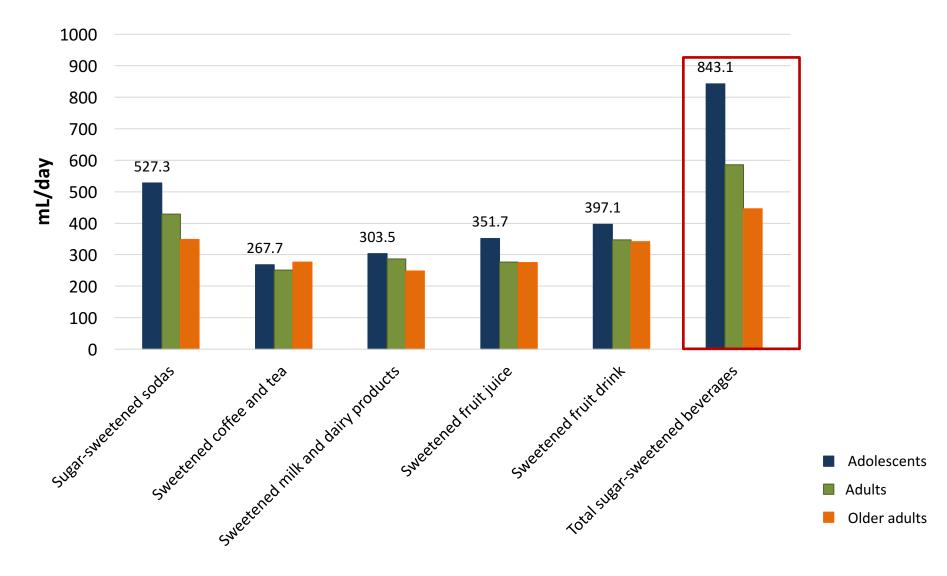
Western/unhealthy dietary pattern


Rodríguez-Monforte M. Br J Nutr 2015

Global dietary patterns and CVD

References	Year	Event	BB	95% CI	Weigh
Cohort study CHD				875808538	70:5233
Hu et al.(35)	2000	CHD	- 0.75	0-59, 0-95	10-59
Osler et al.(23)	2002	CHD	1.06	0.93, 1-21	17-09
Cai et al.(37)	2007	CHD	• 1.10	0.61, 1.99	2.77
Akesson et al.(38)	2007	CHD	- 0.74	0-58, 0-94	10.70
Shimazu et al.(25)	2007	CHD	0.82	0-52, 1-29	4-33
Brunner et al. ⁽⁴¹⁾	2008	CHD	0.71	0.51, 0.98	7.15
Guallar-Castillon et al. (26)		CHD	- 0.73	0-57, 0-94	10-03
Maruyama et al.(27)	2012	CHD	0.73	0-49, 1-08	5.41
Maruyama et al. ⁽²⁷⁾	2012	CHD *	0.67	0-43, 1-05	4-38
Stricker et al. ⁽²⁸⁾	0.000	CHD -+	0.87	0.75, 1-00	16-24
Chen Yu et al. (43)	2012		0-86	0-69, 1-08	11-31
	2012	сно 🦳	0.83	0.75, 0.92	100-00
Subtotal ($I^2 = 44.6\%; P$:	= 0.054	~		0.0,000	100 01
Cohort study-stroke					
Fung et al. ⁽³⁶⁾	2004	Stroke	0.74	0.54, 1.02	10-19
Cai et al.(37)	2007	Stroke	1.35	1.03, 1.78	11-42
Shimazu et al.(25)	2007	Stroke	0.64	0-48, 0-86	10-94
Maruyama et al. ⁽²⁷⁾	2012	Stroke	1.13	0-85, 1-51	11-06
Maruyama et al.(27)	2012	Stroke	0.91	0.68, 1.22	10-92
Stricker et al.(28)	2012	Stroke	0.69	0.54, 0-89	12.07
Chen et al.(43)	2012	Stroke	0-89	0-70, 1-13	12-51
Judd et al. ⁽⁴⁴⁾	2013	Stroke	0.85	0.65, 1.12	11-51
Chan et al.(30)	2013	Stroke •	0.70	0-41, 1-20	5.69
Chan et al.(30)	2013	Stroke ·	0.88	0-43, 1-81	3-68
Subtotal (1 ² = 59-5%; P		\diamond	0-8 6	0-74, 1-01	100-00
Case-control study					
Martinez-Ortiz et al.(45)	2006	AMI	0.92	0.57, 1-49	5.46
Iqbal et al. ⁽⁴⁶⁾	2008	AMI	0.70	0-61, 0-80	69-52
Guo et al.(47)	2013	AMI	0.70	0.56, 0.88	25-02
Subtotal (1 ² = 0.0%; P =			0.71	0-63, 0-80	100.00
Cabad dudy CVD			444 (1993) (1993)		
Cohort study CVD Harriss et al. ⁽²⁴⁾	2007	Total CVD	- 0.70	0.51, 0.96	17-55
			0.72	0-52, 1-00	16-42
Panagiotakos et al.(39)	2008	Total CVD	0.72	0-60, 0-87	50-85
Heidemann et al. (40)	2008	CVD mortality	0.72		
Nettleton et al.(42)	2009	Total CVD		0-33, 0-90	6-82
Zazpe <i>et al.</i> ⁽³¹⁾ Subtotal (<i>I</i> ² = 0.0%; <i>P</i> =	2014 0.687)	CVD mortality	0.54 0.69	0-34, 0-85 0-60, 0-78	8-36
Note: weights are from ra		ects analysis	0.2023		
			1		
		0.325	1 3-0	0	

Prudent/healthy dietary pattern


Rodríguez-Monforte M. Br J Nutr 2015

Nutrition Research

FOODS / FOOD GROUPS - OUTCOMES

Intake of sugar sweetened beverages among consumers according to age group in São Paulo, ISA-Capital, 2008

Fontes A, Fisberg RM. 2016

Demographic, socioeconomic, and lifestyle variables associated with sugar-sweetened beverage intake in residents in São Paulo. ISA-Capital 2008

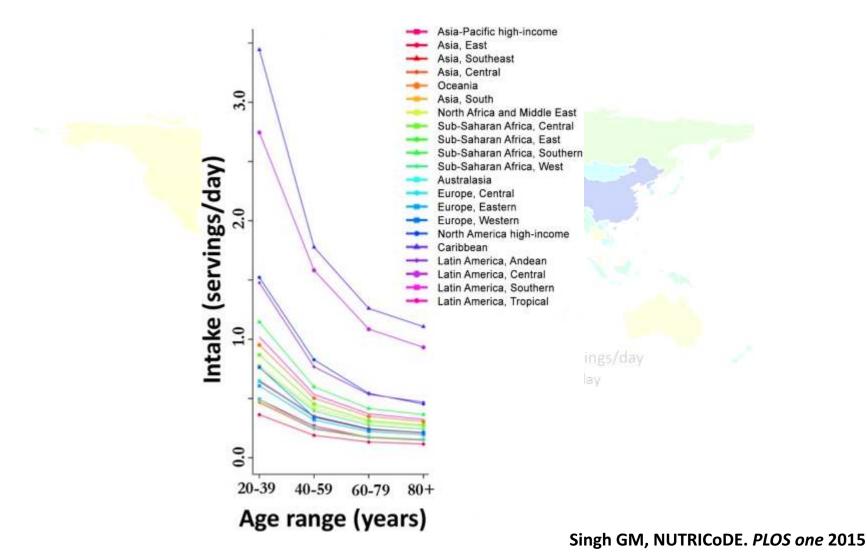
	Adolescents		Adults		Older adults	
	β	95% CI	β	95% CI	β	95% CI
Sex ^a						
Female	-152,6	-236,7; -68,4	-54,1	-120,9; 12,7	-34,7	-90,4; 21,1
Alcohol consumption ^b						
Consumer	21,8	-49,3; 93,0	-35,9	-122,2; 50,4	1,8	-54,6; 58,2
Household per capita income ^c	-1,2	-3,0; 0,6	-0,5	-3,8; 2,7	-2,7	-3,9; -1,6
Body Mass Index ^d						
With excess body weight	126,9	35,6; 218,2	-35,9	-122,2; 50,4	61,1	3,2; 118,9
Physical activity ^e						
Sufficiently active	56,6	-20,0; 133,2	99,8	6,5; 193,2	83,7	-9,3; 176,7

^aref: male ^bref: non-consumer ^cUSD/month. Values divided per 100 USD ^dref: without excess body weight ^eref: insufficiently active

Adolescents

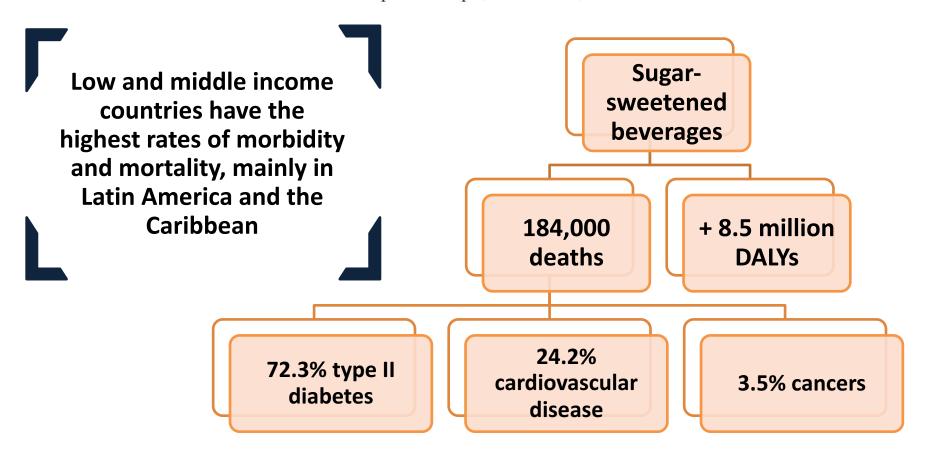
 \downarrow female sex

↑ with excess body weight


Adults ↑ Sufficiently active **Older adults**

- ↓ Household per capita income
- \uparrow with excess body weight

RESEARCH ARTICLE


Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries

Circulation. 2015;132:639-666. DOI: 10.1161/CIRCULATIONAHA.114.010636.

Estimated Global, Regional, and National Disease Burdens Related to Sugar-Sweetened Beverage Consumption in 2010

Gitanjali M. Singh, PhD; Renata Micha, PhD; Shahab Khatibzadeh, MD; Stephen Lim, PhD; Majid Ezzati, PhD; Dariush Mozaffarian, MD, DrPH; on behalf of the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE)*

Conclusions

 Dietary patterns allow us to evaluate quality of the diet or meals

Which are the groups of risk in different populations and

What are the association factors with health outcomes

Gracias

Obrigado

www.gac-usp.com.br

