IUNS 21st ICN International Congress of Nutrition "From Sciences to Nutrition Security" Buenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

www.iuns-icn2017.com info@iuns-icn2017.com

Introductory Remarks

State of the Science on the Biological Importance of Diet and Physical Activity in Disease Risk Reduction and Health Maintenance

Prof. Angel Gil

Department of Biochemistry and Molecular Biology II, Institute of Nutrition & Food Technology "José Mataix", Biomedical Research Center, University of Granada, CIBEROBN, Spain

IUNS 21st ICN International Congress of Nutrition "From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

www.iuns-icn2017.com info@iuns-icn2017.com

Conflict of Interest Disclosure

I have no conflict of interest to report in relation to this presentation.

THE GLOBAL BURDEN OF MALNUTRITION 2016

International Food Policy Research Institute. 2016. *Global Nutrition Report 2016: From Promise to Impact: Ending Malnutrition by 2030*. Washington, DC.

PREVALENCE OF NON-COMMUNICABLE CHORNIC DISEASES

🗌 Injuries

Fuente :WHO, 2015

PROGRESS OF COUNTRIES RELATED TO GLOBAL SUSTAINABLE GOALS FOR 2030

Data based on Stevens et al. (2013), UNICEF (2016b), UNICEF, WHO, and World Bank (2015)

RISK FACTORS OF NCCD

- Cardiovascular disease
- Diabetes
- Cancer
- Chronic respiratory disease
- Hypertension
- Dyslipidemia
- ► Obesity
- Metabolic syndrome
- Arthritis
- Osteopenia/osteoporosis
- Degenerative disc disease
- Depression
- Sarcopenia and frailty
- Cognitive impairment
- Cerebrovascular disease
- Neurodegenerative disease
- Rheumatoid arthritis

Preventing CHRONIC DISEASES a vital investment

iiMortality due to NCCD
could be reduced by 50% by
application of recent
knowledgejj

FRUITS AND VEGETABLES IN THE PREVENTION OF NCCD

Preventive nutrition Bioactive compounds from plants

Development of vegetal extracts to balance lifestyle Campaign in different countries to promote the consumption of Fruits and Vegetables

www.mdpi.com/journal/nutrients

Review

A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

Oscar D. Rangel-Huerta, Belen Pastor-Villaescusa, Concepcion M. Aguilera and Angel Gil *

Evidence shows that some polyphenols used as BAC such as flavonols are helpful in decreasing risk factors of CVD. However, it is necessary to develop better quality RCTs (crossover design, double-blinded, long term, placebo/controlled) as well as elaborate rigorous metaanalysis of existing evidence to support the effect of BAC on the prevention and treatment of CVD.

Review

Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases

Oscar Daniel Rangel-Huerta¹ and Angel Gil^{1,2,*}

Metabolomics is a powerful tool to investigate the potential protective role of BACs in the prevention and treatment of non-communicable chronic diseases, namely cardiovascular disease, diabetes, and cancer. Fats and fatty acids in human nutrition Report of an expert consultation FAO FOOD AND NUTRITION PAPER

ISSN 0254-4725

91

Grasas y ácidos grasos en nutrición humana Consulta de expertos ESTUDIO FAO ALINENTACIÓN V NUTRICIÓN

FINUT bestervalesestervales

WWW.FINUT.ORG

RELATIVE RISKS OF CVD ASSOCIATED TO THE INTAKE OF *trans* FATTY ACID INTAKE

Type and Year of Study Prospective cohort studies	No. of Subjects	No. of Events	
Nurses' Health Study, 200555	78,778	1766	1.33
Health Professionals Follow-up Study, 2005 ⁵⁶	38,461	1702	1.26
Alpha-Tocopherol Beta-Carotene Cancer Prevention Study, 1997 ⁵³	21,930	1399	1.14
Zutphen Elderly Study, 200154	667	98	1.28
Pooled prospective studies			1.23
Retrospective case-control studies			
EURAMIC, 199558	1,388	671	0.97
Costa Rica, 2003 ⁵⁹	964	482	2.94
Australia, 2004 ⁶⁰	78	44	2.50
Pooled prospective and retrospective studies			0.6 1.0 1.4 2.5 2.9
			Multivariable Relative Risk of CHD with Higher Trans Fatty Acid Intake

EFFECT OF FAT TYPE INTAKE ON LDL OXIDATION

BIN BRITISH JOURNAL OF NUTRITION

BRITISH JOURNAL OF NUTRITION

Volume: 107

Supplement 2

June 2012

An International Journal of Nutritional Science

Supplement

Systematic reviews of the role of omega-3 fatty acids in the prevention and treatment of disease Guest Editor: Angel Gil Associated Guest-Editors: Luis Serra, Philip Calder, Ricardo Uauy

Published on behalf of The Nutrition Society by Cambridge University Press - ISSN 0007-1145

Volume: 107 | Supplement 2 | June 2012

n-3 PUFA AND CORONARY EVENTS

	Experir	xperimental Control				Odds ratio			Odds ratio				
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI Year		M-H, fixed, 95% (5% CI		
Nye 1990	9	36	16	37	1.2%	0.44 [0.16, 1.18]	1990						
Sacks 1995	7	41	11	39	0.9%	0.52 [0.18, 1.53]	1995				-		
Leng 1998	10	60	15	60	1.3%	0.60 [0.24, 1.47]	1998	_	_				
GISSI-prevenzione 1999	424	5666	485	5668	45.0%	0.86 [0.75, 0.99]	1999						
Von Schacky 1999	1	112	4	111	0.4%	0·24 [0·03, 2·19]	1999 🗲				—		
Nilsen 2001	42	150	36	150	2.6%	1.23 [0.73, 2.07]	2001		-		—		
Raitt 2005	10	100	11	100	1.0%	0.90 [0.36, 2.22]	2005				—		
Brouwer 2006	10	273	12	273	1.2%	0.83 [0.35, 1.95]	2006			-	—		
Yokoyama 2007	220	9326	290	9319	28.4%	1.75 [0.63, 0.90]	2007						
GISSI-HF 2008	107	3494	129	3481	12.6%	0.82 [0.63, 1.07]	2008		-	-			
Galan 2010	49	1253	55	1248	5.3%	0.88 [0.60, 1.31]	2010		_				
Einvik 2010	0	281	2	282	0.2%	0.20 [0.01, 4.17]	2010 🗲					—	
Total (95% Cl)		20792		20768	100.0%	0.82 [0.75, 0.90]				♦			
Total events	889		1066				F						
Heterogeneity: Chi ² = 8·7	'1, df = 1'	1 (<i>P</i> = 0⋅	65); l ² = 0)%			0.1	0.2	0.5	1	2	5	10
Test for overall effect: Z	= 4·17 (<i>P</i>	= 0.000	1)					Fav experi	ours mental		Favo cont	ours trols	

Delgado- Lista et al. Br J Nutr. 2012107, S201–S213

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Review

Omega 3 fatty acids in cardiovascular disease risk factors: An updated systematic review of randomised clinical trials

Oscar D. Rangel-Huerta^a, Angel Gil^{a, b, *}

The use of omega-3 LC-PUFAs for ameliorating CVD risk factors can be recommended. However, the administration of omega-3 does not seem to show any benefit for the management of CVD or associated complications

Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy

I-Min Lee, Eric J Shiroma, Felipe Lobelo, Pekka Puska, Steven N Blair, Peter T Katzmarzyk, for the Lancet Physical Activity Series Working Group*

THE LANCET **2012**

Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy

I-Min Lee, Eric J Shiroma, Felipe Lobelo, Pekka Puska, Steven N Blair, Peter T Katzmarzyk, for the Lancet Physical Activity Series Working Group*

CONCLUSION

If <u>inactivity</u> were not eliminated, but <u>decreased instead by</u> <u>10% or 25%</u>, more than <u>533 000 and more than 1·3 million</u> <u>deaths</u>, respectively, could be <u>SAVED every year</u>.

The economic burden of physical inactivity: a global analysis of major non-communicable diseases

Ding Ding, Kenny D Lawson, Tracy L Kolbe-Alexander, Eric A Finkelstein, Peter T Katzmarzyk, Willem van Mechelen, Michael Pratt, for the Lancet Physical Activity Series 2 Executive Committee*

THE LANCET 2016

Conservatively estimated...

physical inactivity cost health-care systems **53.8\$ billion worldwide in 2013**

What is more important for health increasing physical activity or decreasing sedentarism?

Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women

Ulf Ekelund, Jostein Steene-Johannessen, Wendy J Brown, Morten Wang Fagerland, Neville Owen, Kenneth E Powell, Adrian Bauman, I-Min Lee, for the Lancet Physical Activity Series 2 Executive Committe* and the Lancet Sedentary Behaviour Working Group*

THE LANCET

2016

PHYSICAL ACTIVITY, SEDENTARISM AND HEALTH

HOW IMPORTANT IS FITNESS?

JAMA®

Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women: A Meta-analysis

Satoru Kodama; Kazumi Saito; Shiro Tanaka; et al.

JAMA. 2009;301(19):2024-2035 (doi:10.1001/jama.2009.681)

Figure 2. Meta-analysis of All-Cause Mortality and CHD/CVD per 1-MET Higher Level of MAC

Source	Weight, %	RR (95% CI)	
All-cause mortality			1
Erikksen et al, ³⁶ 1998	4.46	0.74 (0.67-0.81)	
Aktas et al, ³⁰ 2004	4.52	0.78 (0.71-0.85)	
Miller et al, ⁶ 2005	2.33	0.78 (0.66-0.93)	
Katzmarzyk et al, ⁴⁵ 2005	6.01	0.81 (0.77-0.86)	
Laukkanen et al, ⁸ 2007	5.78	0.82 (0.77-0.87)	
Gulati et al, ³⁹ 2005	5.59	0.83 (0.78-0.89)	
Myers et al, ⁴⁷ 2002	5.84	0.84 (0.79-0.89)	
Sawada and Muto, ⁵¹ 1999	4.85	0.85 (0.78-0.92)	- -
Arraiz et al, ³² 1992	4.45	0.87 (0.79-0.95)	_
Sandvik et al, ⁵⁰ 1993	3.38	0.88 (0.77-1.00)	#
Mora et al, ⁴⁶ 2003	6.43	0.88 (0.84-0.92)	·
Stevens et al, ²¹ 2002 [women]	4.99	0.89 (0.82-0.96)	
Farrell et al, ³⁸ 2002	5.27	0.91 (0.84-0.98)	-#-
Aijaz et al, ²⁹ 2008	6.64	0.91 (0.87-0.94)	—
Stevens et al, ²² 2004	6.21	0.91 (0.87-0.96)	
Stevens et al, ²¹ 2002 [men]	6.79	0.94 (0.91-0.97)	
Villeneuve et al, ⁵³ 1998	2.84	0.94 (0.81-1.09)	
Hein et al, ⁴² 1992	6.77	0.95 (0.92-0.98)	
Slattery and Jacobs, ⁵ 1988	6.85	0.96 (0.93-0.99)	
Overall	100.00	0.87 (0.84-0.90)	\diamond
Test for heterogeneity: I ² =82.3%; P<.001			
			0.4 0.6 0.8 1.0 1.2
			RR per 1-MET Higher Level

of MAC (95% CI)

Lean low fit vs. Obese but fit

Ortega et al., Circulation Research, 2016

BMJ 2012;345:e7279 doi: 10.1136/bmj.e7279 (Published 20 November 2012)

Page 1 of 12

Muscular strength in male adolescents and premature death: cohort study of one million participants

Francisco B Ortega *research associate*¹²³, Karri Silventoinen *research associate*⁴, Per Tynelius *statistician*⁵, Finn Rasmussen *professor*⁵

Follow-up: 25 years

Association between strength, BMI, blood pressure and mortality by all causes

Ortega et al. BMJ, 2012; 345: e7279

Association between strength and current and future risk of psychiatric disorder

Psychiatric diagnosis years later (longitudinal analysis)

Ortega et al. BMJ, 2012; 345: e7279

Association between strength, BMI, blood pressure and mortality by suicide

Ortega et al. BMJ, 2012; 345: e7279

2008

>1000 citations (July. 2017)

SCIENCE AND SOCIETY

Be smart, exercise your heart: exercise effects on brain and cognition

Charles H. Hillman, Kirk I. Erickson and Arthur F. Kramer

ActiveBrains Project

"Effect of an exercise program on brain, cognition, pysical and mental health in overweight and obese children"

http://profith.ugr.es/activebrains

IP: Dr. F. Ortega

Cognition & Brain

- Changes (functional and structural) on brainfMRI
- Neuroelectric measurements ECG
- Cognitive performance
- Academic achievement

Cardiorrespiratory fitness and brain area volumes

Cardiorespiratory fitness

Speed-agility

Association of fitness with a higher cognition capacity

Mora-González et al. Non-published results

Association of fitness with higher academic achievement

Cadenas-Sánchez et al. Resultados en proceso de publicación

¿...and what to do ?

← → C ≜ Es seguro https://health.gov/paguidelines/						\$:
🗰 Aplicaciones 🧕 Getting Started 🔺 Bookmarks 📒 Journals and Dataset	🦲 UGR 📒 cursos	📙 KI 📒 others 📙 beca	s-proyectos 🌓 Save to Mend	leley 📙 otros		
ODDEND Office of Disease Prevention and Health Promotion	health.gov healthfinder.g		HealthyPeople			
health.gov	Our Work 👻	News & Media	About ODPHP	health.gov All O	DPHP sites Search	
Dietary Guidelines	ysical Activity Guidelines	Health Literacy and Communication	Health Care Quality and Patient Safety	Healthy People	healthfinder	
health.gov » Physical Activity Guidelines						
	Physi	cal Activity	Guidelines			
Physical Activity Guidelines	The Physi	cal Activity Guidelin	es for Americans (PAG	G or the Guidelines) a	re an essential	
Upcoming Guidelines	- resource	for health professio	hal and policymakers.	. Based on the latest	science, they	
	provide g	uldance on now chil	dren and adults can i	mprove their health t	nrough physical	
Overview	activity. Le	earn ways to help co	dren and adults can i nsumers understand	mprove their health f I the benefits of phys	ical activity and	

¿Type of Exercise, Frequency, Duration?

Take home message

Go to training and exercise and become healthier!!!