

Sheraton Buenos Aires Hotel & Convention Center

Exploring the role of the major gut microbiota clusters on nutritional and functional benefits of nutrients and non-nutrients

Ian Rowland
Department of Food & Nutritional Sciences
University of Reading, UK

i.rowland@reading.ac.uk

IUNS 21st ICN International Congress of Nutrition

"From Sciences to Nutrition Security"

uenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

Conflict of Interest Disclosure

This work was conducted by an expert group of the European branch of the International Life Sciences Institute, ILSI Europe. The non-industry members within this expert group were offered support for travel and accommodation costs to attend meetings for discussing the manuscript, and a small compensatory sum (honorarium) with the option to decline.

ILSI Europe group: 'Role of microbiota on nutritional & functional benefits of nutrients & non-nutrients'

Aims of the expert group

- Evaluate role of microbiota in metabolism of dietary compounds
- Review mechanisms and pathways involved
- Identify main types of microorganisms involved
- Consider the methodologies for investigating gut microbiota metabolism

Outputs

Shortt *et al* 'Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients' Eur J Nutr. 2017

Rowland *et al* 'Gut microbiota functions: metabolism of nutrients and other food components' Eur J Nutr. 2017 Apr 9.

Human gut microbiota – phyla & genera

Firmicutes

- Clostridium
- Roseburia
- Faecalibacterium
- Blautia
- Dorea
- Lactobacillus
- Peptostreptococcus
- Eubacterium
- Streptococcus
- Staphylococus
- Butyrivibrio

Bacteroidetes

- Bacteroides
- Prevotella

- Verrucomicrobia
 - Akkermansia
- Proteobacteria
 - Escherichia
 - Klebsiella
 - Desulfovibrio

- Bifidobacterium
- Collinsella

90% of bacteria are in Bacteroidetes/ Firmicutes phyla

Gut microbiota - metabolism

- Large metabolic potential equivalent to, but different from that of liver
- Microbiota metabolic range
 - Reduction
 - Hydrolysis
 - Polysaccharide fermentation
 - Dehydroxylation
 - Methylation

- Demethylation
- Deamination
- Nitrosation
- Ring fission
- Aromatization
- Oligomer breakdown

Dietary components reviewed

- Carbohydrates
- Energy homeostasis
- Proteins
- Lipids
- Bile acids
- Vitamins
- Phytochemicals/polyphenols

Carbohydrate fermentation

Energy homeostasis

Studies in humans and animals suggest microbiota is involved in assimilation, storage & expenditure of energy obtained from dietary substrates.

- Some studies report higher Firmicutes/Bacteroides ratio in obese subjects
- Higher BMI associated with increased abundance of *Eubact. ventrosium* and *Roseburia intestinalis*, *E. rectale*
- Weight-loss regimes (diet or gastrectomy) associated with ↑ Bacteroidetes ↓ Firmicutes inc *Clostridium, Eubacterium, Coprococcus*).

Potential mechanisms

- Gut microbes break down non-digestible carbohydrates to SCFA allowing the host to salvage energy from indigestible dietary substrates.
- SCFA
 ↓ energy intake : Pr & Bu increase the levels of satiety hormones
 PYY and GLP-1, Ac & Pr increase expression of leptin
 - Role of specific gut microbes and SCFA in energy balance remains to be clarified

Protein metabolism

clostridia peptostreptococci peptococci

Bacteroides spp Eubacterium hallii Clos barlettii

Branched chain fatty acids (BCFA)

- Isobutyrate (from val)
- 2-methylbutyrate (i-leu)
- Isovalerate (leu)

Lipid metabolism

 Linoleic acid reduced to stearic acid (via CLA and vaccinic acid) in vitro by range of gut bacteria

Phosphatidylcholine to TMA

Microbiota metabolism of choline to TMA and TMAO

TMA produced by solely by gut microbiota

High-fat diets lead to increased production of TMA and TMAO, risk factors for cardiovascular disease

Choline metabolizers:

Proteobacteria: Desulfovibrio desulfuricans, Klebsiella spp,

Escherichia spp, Edwardsiella tarda, Proteus penneri

Firmicutes: Clos sporogenes, hathewayi, asparagiforme

Martinez-del-Campo mBlo 6(2) e00042 (2015) Romano et al mBio 6(2) e02481 (2015)

Bile acids

1. Deconjugation by bacterial bile salt hydrolases (BSH)

Bile salt hydrolase

- BSH genes identified in the main bacterial genera including Bacteroides, Bifidobacterium, Clostridium, Lactobacillus, and Listeria
- Most hydrolyze both glyco and tauro-conjugates.
- Reduces toxicity of bile acids, releases N, S and C atoms
- Deconjugation reduces efficiency of BA for emulsifying lipids and micelle formation

Bile acids - further metabolism

7-α-dehydroxylase

main bacterial genera include Clostridium, Eubacterium

Epimerization

 Main genera: Bacteroides, Clostridium, Egghertella, Peptostreptococcus, Ruminococcus, Eubacterium

Vitamin synthesis

- Vitamin synthesis genes common esp. vitamin K and B group vitamins - biotin, cobalamin, folate, nicotinic acid, panthothenic acid, pyridoxine, riboflavin and thiamine
- For riboflavin & biotin, all tested microbes in Bacteroidetes
 Fusobacteria and Proteobacteria phyla had required
 pathways, fewer Firmicutes and Actinobacteria had the
 pathways
- Bacteroidetes is most important phyla for vitamin synthesis
- Many of these vitamins are utilized by other bacteria

Vitamin synthesis

Vitamin	Intracellular concentration [mmol/gDW]	Dietary reference intake [mg/ day]	%DRI from gut microbiota
Biotin	9.0 x 10 ⁻⁷	0.03	4.5
Cobalamin	8.5 x 10 ⁻⁸	0.0024	31
Folate	5.0 x 10 ⁻⁵	0.4	37
Niacin	3.3 x 10 ⁻³	15	27
Pantothenate	2.3 x 10 ⁻⁶	5	0.078
Pyridoxine	5.8 x 10 ⁻⁴	1.3	86
Riboflavin	9.0 x 10 ⁻⁶	1.2	2.8
Thiamin	8.7 x 10 ⁻⁶	1.15	2.3

Phytochemicals

Polyphenols

- Often poorly absorbed in small intestine → colon
- Parent polyphenols are extensively metabolized by the microbiota, (deglycosylation, ring fission, dehydroxylation) - can impact bioactivity
- Metabolism often requires consortia or 2 or more microbes
- Large interindividual variations in absorption and excretion ascribed to differences in gut microbiota

Pathways of colonic degradation of the flavonoid rutin

Gut microbiota & inter-individual variation in polyphenol metabolism

- Differences in composition of microbiota between individuals can have significant effects on extent of metabolism and metabolite profile
- Examples:
 - Isoflavonoids (daidzein to equol)
 - Naringin
 - Anthocyanins
 - Lignans
 - Tea catechins
 - Rutin

Isoflavone metabolism by gut bacteria

Blaut et al 2003; Decroos et al 2005; Matthies et al 2009, 2012)

Equal excretion in subjects consuming soy isoflavonoids

Subjects consumed soy burgers (56mg IF) - 1/day for 17days (Rowland et al 2003)

Methodologies

- Isolated cultures
- Gut microbial enzyme activity
- Omics approaches
 - Metagenomics
 - Metatranscriptomics
 - Metaproteomics
 - Metabolomics
- Mathematical modeling

Omics approaches for studying gut microbial metabolism/function

- Metagenomics study functional genes associated with specific microbial types,
- Meta-transcriptomics monitor active bacteria, reveals functional roles (eg CHO metabolism) info on functional dysbiosis,
- Meta-proteomics confirming microbial function (faecal meta proteome is subject-specific and stable)
- Metabonomics pathway analysis, metabolic biomarkers of disease risk

Conclusions

- Gut microbiota metabolism enlarges the capacity of host to metabolize range of dietary components and extends the range of metabolites formed
- CHO metabolism is major function of microbiota pathways and microbes well studied.
- Microbial metabolites of nutrients and non-nutrients can be important cell signaling molecules (SCFA, bile acids) and have impacts on health (SCFA, TMA, phenolics)
- Large interindividual variation in microbiota consequences for metabolism of dietary compounds and health
- 'Omics' provide insight into microbiota function at high resolution

Acknowledgements Members of the ILSI Europe working group

Jean-Michel Antoine (Danone)

Glenn Gibson (University of Reading)

Oliver Hasselwander (DuPont)

Alexandra Meynier (Mondelez)

Arjen Nauta (Royal Friesland Campina)

Karen Scott (Rowett Institute)

Colette Short (Johnson & Johnson)

Jonathan Swan (Imperial College London)

Ines Thiele (University of Luxembourg)

Kieran Tuohy (Fondazione E Mach)

Jessica Türck (Yakult Europe)

Joan Vermeiren (Cargill)

Estefania Noriega (ILSI Europe)

Peter Putz (ILSI Europe)

Tobias Recker (ILSI Europe)

