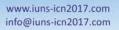
"From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017



"From Sciences to Nutrition Security"

uenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

Conflict of Interest Disclosure

I have no personal conflict of interest to report in relation to this presentation and my data.

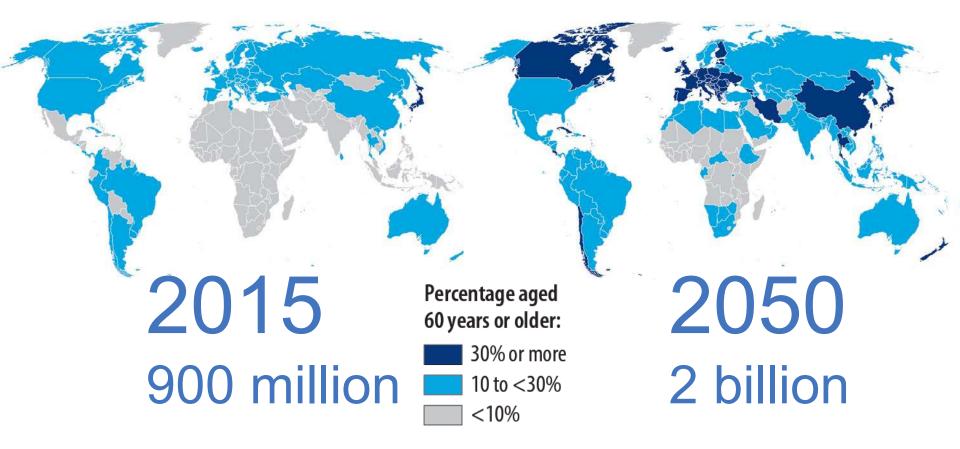
However, part of the presentation has been supported by the ILSI Europe Nutrition and Mental Performance Task Force. Industry members of this task force are listed on the ILSI Europe website at www.ilsi.eu. The opinions expressed herein and the conclusions do not necessarily represent either the views of ILSI Europe or those of its member companies.

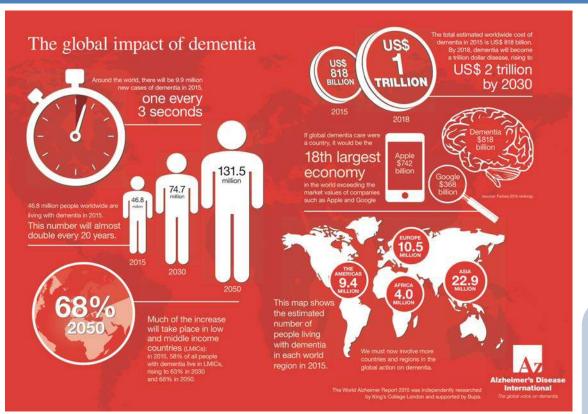
"From Sciences to Nutrition Security"

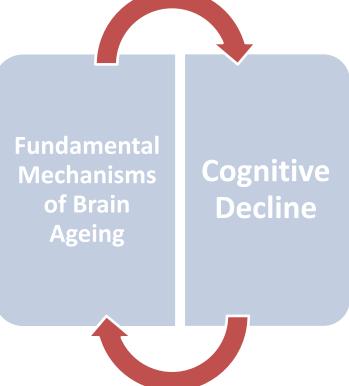
www.iuns-icn2017.com info@iuns-icn2017.com

Sheraton Buenos Aires Hotel & Convention Center

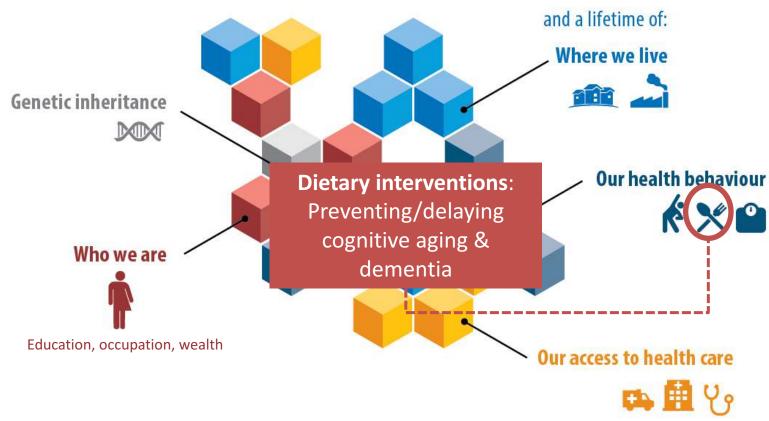
Nutrition for the Aging Brain: Functional Aspects and Strategies

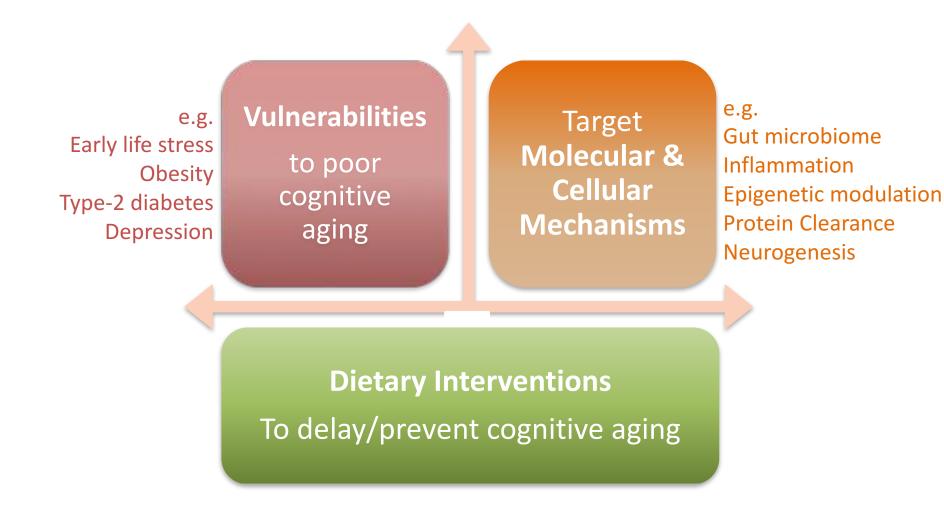

Alteration of Neurogenesis during Ageing: Implications for Dietary Interventions


Populations are getting older



>65: Risk of dementia doubles every 5 years


Global Impact of Dementia

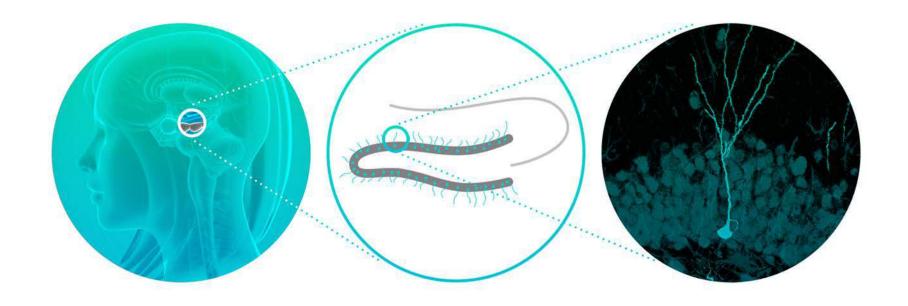

Not all equal in front of (brain) aging

What makes us age differently?

Efficient Dietary Interventions Strategies: Need to identify Vulnerabilities and Mechanisms

Miquel et al. ILSI Nutrition and Mental performance task Force, in revision Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions

Adult Neurogenesis?


"Once development was ended, the fonts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers, the nerve paths are something fixed, and immutable: everything may die, nothing may be regenerated."

Santiago Ramon y Cajal, 1928

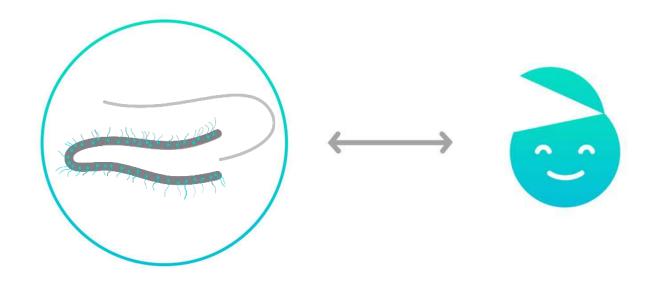
Altman and Das, 1965

Human Hippocampus: Adult Neurogenesis

"From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

www.iuns-icn2017.com info@iuns-icn2017.com



Sheraton Buenos Aires Hotel & Convention Center

Functional Relevance of Adult Hippocampal Neurogenesis

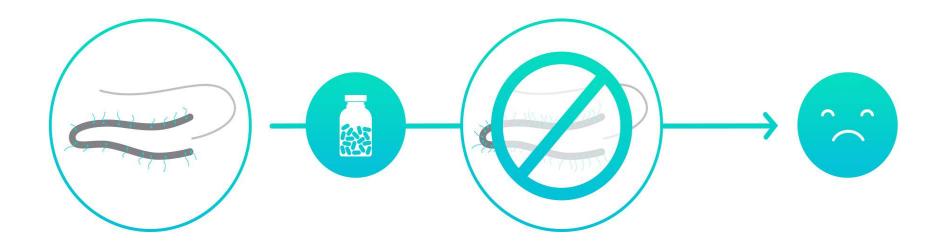
Functional Relevance of Adult Neurogenesis: Learning & memory

Level of Neurogenesis is positively correlated with hippocampal dependent learning tasks

Functional Relevance of Adult Neurogenesis: Learning & memory

New hippocampal neurons:

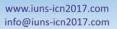
- Increase spatial memory capacity
- Reduce interference between memories (pattern separation)
- Add information about time to new memories
- Are involved in forgetting of established context-memories.


Functional Relevance of Adult Neurogenesis: Mood & Depression

•Adult Hippocampal Neurogenesis is reduced in some animal models of depression.


•Many treatments for depression promote Adult Hippocampal Neurogenesis and are dependent on functional neurogenesis.

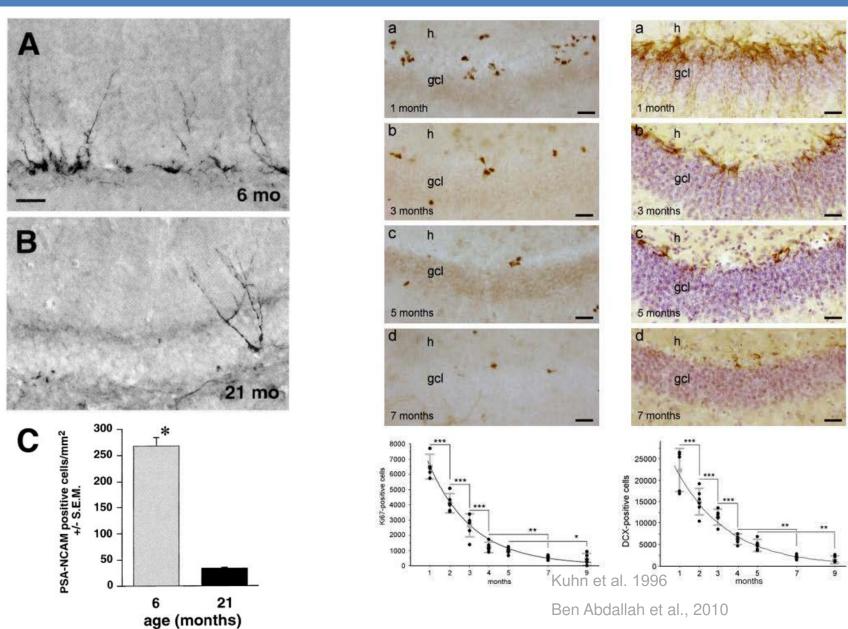
Functional Relevance of Adult Neurogenesis: Mood & Depression


Adult Hippocampal Neurogenesis emerging as Target of choice?

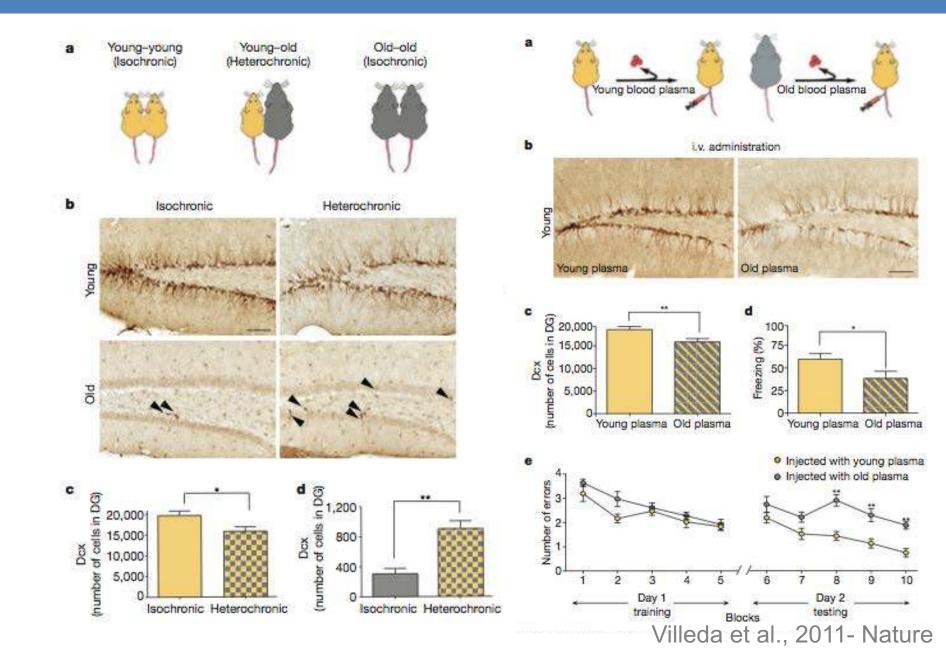
"From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center



How is Adult Hippocampal Neurogenesis altered during Aging?



Adult Hippocampal Neurogenesis decreases with age in rodents

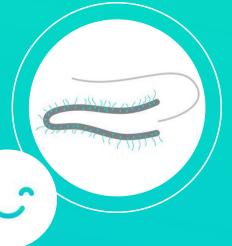
For Review, Klemplin and Kempermann 2007

Neurogenesis decline with age: Parabiosis and the Systemic Milieu

"From Sciences to Nutrition Security"

Buenos Aires, Argentina, 15-20 October 2017

www.iuns-icn2017.com info@iuns-icn2017.com



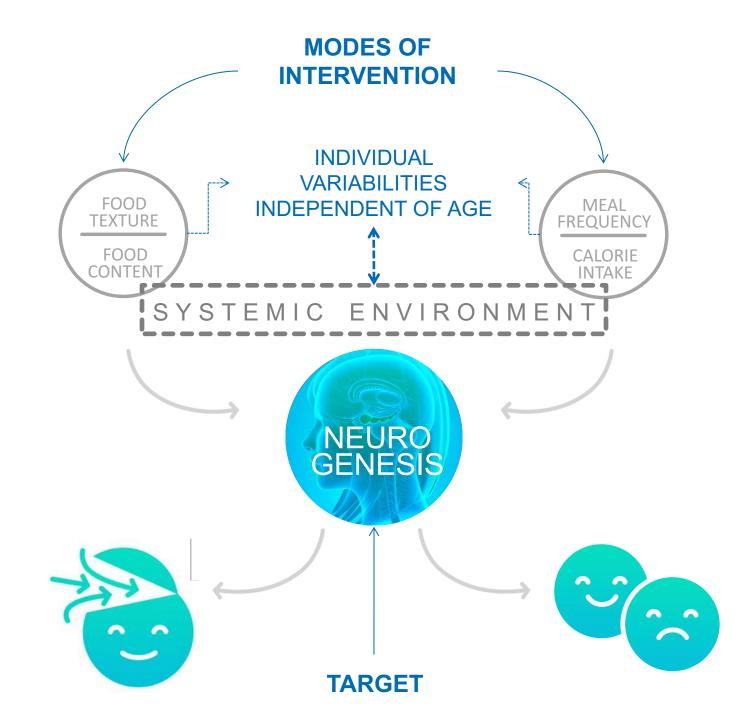
Sheraton Buenos Aires Hotel & Convention Center

Can life style modulates Adult Hippocampal Neurogenesis?

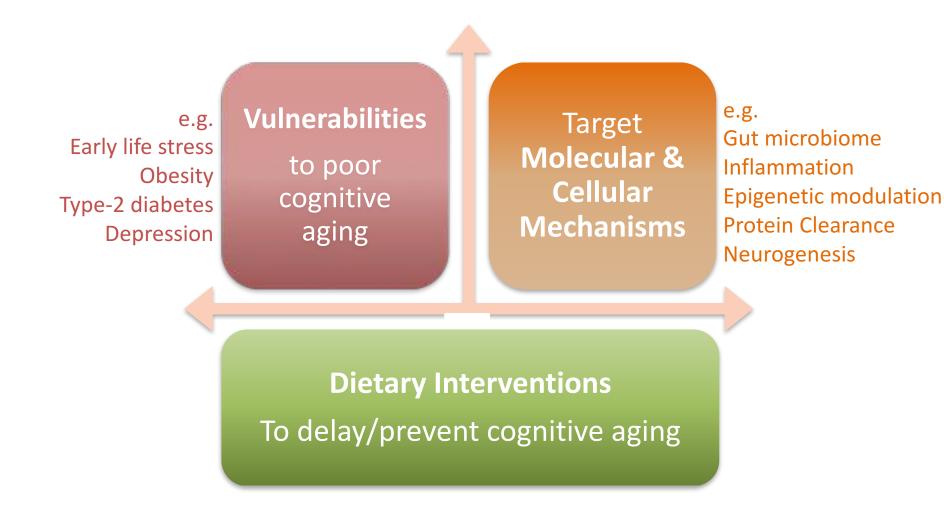
Diet modulates Adult Hippocampal Neurogenesis

DIET	Effect on AHN	STUDY MODELS	References
Calorie Restriction	Increased survival	Mouse	68-70, 125-127
Omega 3 fatty acids	Increased	Rat	77, 87, 128-130
	Increased proliferation	Rat chronically stressed	88
Flavonoids	Increased proliferation	Mice	131, 132
Blueberry	Increased proliferation	Rat	133
Curcumin low concentrations	Increased proliferation	Mouse	91, 93-95
Retinoic acid excess	Decreased proliferation	Mouse	106
Vitamin A deficiency	Decreased proliferation (rescued with retinoic acid)	Rat	108
Thiamine deficiency	Decreased proliferation/ survival	Mouse	134, 135
Zinc deficiency	Decreased proliferation/survival	Rat male	100, 103, 136
Folic acid	Increased proliferation	Rat	137
Folate deficiency	Inhibited proliferation	Mouse	138
Increased Homocystein	Inhibited proliferation	Mouse	139, 140
High fat	Decreased proliferation	Rat male	115, 116
riigii iat	No change	Rat female	
Soft diet	Decreased proliferation	Rat	73, 76
Caffeine at physiologically relevant doses	Decreased proliferation	Mouse	114
Caffeine at supraphysiological doses	Increased proliferation/ Decreased survival	Mouse	113
Caffeine low doses chronically	Decreased proliferation	Rat	
Ethanol	Decreased proliferation	Rat	141, 142
Ethanol	Decreased proliferation	Mouse	143
Capsaicin	Decreased proliferation	Mice	144
Resveratrol	Increased proliferation	Mice	97, 98
High sugar (fructose)	Decreased proliferation	Male Rat	117
Vitamin E deficiency	Increased proliferation	Rat	145-147
Vitamin E high doses	Increased survival	Rat	148

Diet, cognition and mood


EFFECT ON	

DIET	Effect on Depressive Behaviour	Effect on Learning and Memory	STUDY MODELS	References
		Enhanced spatial learning	Rat (aged)	149
Caloric/Dietary		Increased learning and motor performance	Mouse	150
Restriction		Increased learning consolidation	Mouse	151
Intermittent Fasting		Enhanced verbal memory	Human (Healthy Elderly)	71
		Improved spatial learning	Rat (traumatic brain injury)	152
	Improved		Mice (depression model)	85, 86
	Improved		Human (bipolar)	154
	Delayed onset		Human (bipolar)	
	Improved		Human (bipolar)	155
Omega 3 fatty acids	No benefit		Human (bipolar)	156
Omega 3 fatty acids		Improved spatial memory	Mouse (Alzheimer model)	157
		Improved acquisition and retention	Mouse (Aged)	158
		Improved learning performance	Rat (Diabetic)	159
	Small effect	No effect	Human (recovered from depression)	160
	Improved		Rat	89
		Improved	Various Species	For review ¹⁶
Flavonoids		improved	Rodent Species	For review For review
		improved	Rat	165-169
		Increased spatial memory	Rat	90
Blueberry		Improved	Human (old age)	170
		Improved	Mice	171
		Improved cognitive performance	Human	92
		Improved cognitive performance	Rat	94, 172
Curcurmin		Improve spatial memory and learning	Rat	173, 174
		Improved	Mice	175, 176
		Improved	Rat (Alzheimer's disease)	177
	Improved		Rat	96, 178-180
	Improved		Mice	181


Diet, cognition and mood

	-
	ိုင္
Improved	

Button to and t				107	
Retinoic acid excess	Improved		Mouse		
Vitamin A/retinoid		Impaired spatial learning and memory	Rat	182	
deficiency		Impaired relational memory	Mouse	183	
Zinc	Improved		Rodent, Human	For review ¹⁰²	
		Decreased spatial learning	Rat	184	
		Decreased learning and memory and Increased risk for dementia	Rat	185	
High fat		Impair spatial learning	Mice	186	
riigiriat	Exacerbates		Rat (depression model)	187	
		Increased susceptibility to spatial learning deficit	Rat	188, 189	
		Impair memory	Rat	190	
		Impaired spatial learning	Rat	191	
High sugar		Impaired spatial learning	Rat	192	
		Impaired	Rat	193	
Low glucose (extracellular)		Impaired memory	Rat (Aged)	194	
		Impaired	Rat (Alzheimer's model)	74	
Soft diet		Impaired learning and memory	Aged animals	For review	
		Impaired spatial learning and memory	Mice (female albino)	196	
		Improved object recognition	Mouse	197	
Caffeine	Reduced risk		Human	198	
Callellie	Reduced risk		Human	199	
		Improved cognitive function	Rat	200	
		Improved associative learning with moderate chronic consumption	Mouse	201	
Ethanol		Impaired	Human	202	
Ethanor	Induced depressive behaviour		Rat	203	
Capsaicin		No effect	Mice (young)	144	
Resveratrol	Improved		Mice (despair test)	99	
		Improved cognitive function	Mice	98	
Vitamin E deficiency	Associated risk		Human (depression)	204	
	Associated risk		Human (depression)	205	
	No association		Human (aged adult with depression)	206	
\(\(\tau_1\) = \(\tau_2\)		Protective effect	Rat (brain injury)	207	
Vitamin E		Delayed memory loss	Mouse	7ainuddin	and Thuret,

Efficient Dietary Interventions Strategies: Need to identify Vulnerabilities and Mechanisms

Miquel et al. ILSI Nutrition and Mental performance task Force, in revision Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions

"From Sciences to Nutrition Security"

Juenos Aires, Argentina, 15-20 October 2017

Sheraton Buenos Aires Hotel & Convention Center

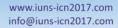
www.iuns-icn2017.com info@iuns-icn2017.com

3rd WORKSHOP

Nutrition for the Ageing Brain: Moving Towards Clinical Applications

Save the Date: 30-31 August 2018 Madrid, Spain

Main themes to be addressed:


- Impact of nutrition on brain functions using neuroimaging technologies;
- Microbiome and immune status: impact on brain function;
- Biomarkers of food intake and cognitive health;
- Sleep deprivation: effects on diet and cognitive performance;
- New methodologies applied to dementia and how nutrition could play a role.

Organised by the ILSI Europe Nutrition & Mental Performance Task Force More information can be found on www.ilsi.eu.

"From Sciences to Nutrition Security"

Sheraton Buenos Aires Hotel & Convention Center

ACKNOWLEDGEMENTS

Tytus Murphy Gisele Dias Aleksandra Maruszak Ksenia Musaelyan Martin Egeland Alessandra Borsini Andrea Du Preez Chiara de Lucia Amina McDiarmid Demelza Smeeth Curie Kim

Leading the fight against dementia

The Psychiatry Research Trust

Sandrine Thuret, PhD

Basic and Clinical Neuroscience @KingsloPPN

Cells & Behaviour Unit @KingsCollegeLon