Imperial College London MRC-PHE Centre for Environment & Health

Exposome: Challenges and Opportunities in the study of NCDs

Paul Elliott

Imperial College London School of Public Health

Disclosures (Paul Elliott)

Dr Elliott *receives funding* from the UK Medical Research Council (MRC), National Institute for Health Research (NIHR), Public Health England (PHE), Department of Health, Home Office, Wellcome Trust, Academy of Medical Sciences, US National Institutes of Health (NIH), European Union. He *chairs* the Population & Systems Medicine Board at the MRC.

Of particular relevance to this presentation, he is *inter alia*

- Director of the MRC PHE Centre for Environment & Health
- Principal Investigator (PI) of UK MED–BIO (Bioinformatics) funded by MRC
- Co-PI MRC-NIHR National Phenome Centre (Metabolomics)
- PI of the *Airwave study* funded by Home Office and NIHR
- Joint PI INTERMAP Metabolomics Study funded by NIH
- Co-PI *Metabolomics signatures of coronary artery disease (CAD) associated genotypes* funded by NIH

Outline

- Epidemiologic context
- Exposome
 - -Metabolome
 - -Nutriome
 - -Genome (causal pathways)
- Cohorts
- Key takeaways

FEATURE

Grand challenges in chronic non-communicable diseases

The top 20 policy and research priorities for conditions such as diabetes, stroke and heart disease.

Abdallah S. Daar', Peter A. Singer', Deepa Leah Persad', Sig K. Pramming', David R. Matthewer', Robert Beaglehole', Alan Bernstein', Leszek K. Borysiewicz', Stephen Colagiun', Nimrad Ganguly¹, Roger L. Glass', Diane T. Finegood', Koplan', Elizabeth G. Nabel', George Sarna', Niza Sarrafzadegan¹, Richard Smith', Derek Yach² and Dan Bell⁴

Chronic non-communicable diseases (CNCDs) are reaching epidemic proportions worldwide³⁴. These diseases – which include cardiovascular conditions (mainly heart disease and stroke), rome cancers, chronic respiratory conditions and type 2 dibetes – affect people of all ages, nationalities and clauses.

The conditions cause the greatest global share of death and disability, accounting for around 60% of all deaths worldwide. Some 80% of chronic-disease deaths occur in low- and middle-income countries. They account for 44% of premature deaths worldwide. The number of deaths from these diseases is deable the number of deaths that result from

with known behavioural and pharmaceutical meet the challenges, and brings new talent

Epidemiological context

Molecular Systems Biology 3; Article number 124; doi:10.1038/msb4100163 Citation: Molecular Systems Biology 3:124 © 2007 EMBO and Nature Publishing Group All rights reserved 1744-4292/07 www.molecularsystemsbiology.com

Barabasi et al (2007)

PERSPECTIVE

Human disease classification in the postgenomic era: A complex systems approach to human pathobiology

Most human diseases are connected at some genetic level

Molecular Systems Biology 3: Article number 124: doi:10.1038/msb4100163 Citation: Molecular Systems Biology 3:124 © 2007 EMBO and Nature Publishing Group All rights reserved 1744-4292/07 www.molecularsystemsbiology.com

Barabasi et al (2007)

PERSPECTIVE

Disease gene network

Human disease classification in the postgenomic era: A complex systems approach to human pathobiology

After Elliott Proctor Joslin MD, Br Med J 1991; 302: 1231

Most human diseases are connected at some genetic level

Challenge

While *genetic data* are a (fixed) digital read-out...

Environmental/lifestyle *exposure data* vary over the lifecourse, are continuously distributed, with wide dynamic range...

...and *difficult to measure*

New approaches required to capture effects of environmental exposures on NCD risk!

Imperial College N'RC BREET

Concept

Centre for Environment & Health

Metabolome...

Metabolomics

- Measurement of small molecules in biological samples (e.g. blood, urine)
- Metabolites represent downstream biochemical end products that are close to the phenotype
- Link between environmental stressors, intrinsic metabolism, genetic information, health and disease

The Challenge of Metabolomic Data

NMR

LC-MS

~1000s signals,100s metabolites

~10,000s signals,1000s (?) metabolites

Measuring The Metabolome

Imperial College

Steps in the analysis

- State-of-the-art (mass spectrometric and NMR spectroscopic) analyses for metabolic finger-printing of biofluids
- Combine metabolic profiling with clinical, lifestyle and other –omics datasets
- Bioinformatic and pathway analyses
- International phenome centres common methods & standardization

Metabolic phenotyping -¹H NMR analysis of 24-hr urine samples: INTERMAP Study (1996-9)

Taurine TMAO

- 4,680 men & women ages
 40-59
- 17 population samples, UK, USA, China, Japan
 - Eight BP measurements
 - Four 24-hr dietary recalls
 - Two 24-hr urine collections (3-6 weeks apart)

Human metabolic phenotype diversity and its association with diet and blood pressure

Elaine Holmes¹*, Ruey Leng Loo^{1,2}*, Jeremiah Stamler³, Magda Bictash^{1,2}, Ivan K. S. Yap^{1,2}, Queenie Chan², Tim Ebbels¹, Maria De Iorio², Ian J. Brown², Kirill A. Veselkov¹, Martha L. Daviglus³, Hugo Kesteloot⁴, Hirotsugu Ueshima⁵, Liancheng Zhao⁶, Jeremy K. Nicholson¹ & Paul Elliott²

INTERMAP Study – Chinese samples

	Mean (SD)				
Trait	N China (N=523)	S China (N=244)			
SBP mm Hg	123.8 (18.6)	115.4 (13.0)			
Ur Na mmol/24h	271.4 (88.3)	139.2 (55.5)			
Ur Na/K ratio	7.8 (2.4)	3.7 (1.5)			
Ca mg/1000 kcal	136.5 (48.4)	175.0 (62.5)			
Mg mg/1000 kcal	133.2 (38.7)	198.2 (27.2)			

Yap et al. J Proteome Res 2010;9(12):6647-54

METABOLOME WIDE ASSOCIATION STUDIES: METABOLIC PHENOTYPE LINKAGE TO HUMAN BLOOD PRESURE

Table 1: Estimated mean differences* in systolic and diastolic BP (Z-scores:)

-22		А				В	li i	
Urinary metabolite		А	djusted fo	or BMI [†]			Adjusted for	r BMI†
			Syst	tolic blood	pressure			
Alanine	2.69	(6.06)	0.40	(0.92)	2.66	(5.54)	1.13	(2.43)
Formate	- <mark>1.1</mark> 9	(-2.62)	-1.42	(-3.29)	-1.94	(-3.92)	-1.04	(-2.20
Hippurate	-2.10	(-4.85)	-1.63	(-3.95)	-1.72	(-3.70)	-0.82	(-1.83
NMNA**	-0.09	(-0.21)	0.20	(0.49)	0.00	(0.00)	0.65	(1.53

**N methyl-nicotinate

"Metabolome-Wide Association Studies" for novel hypothesis generation... e.g....a possible new role for formate in human BP regulation?

METABOLOMICS

Urinary metabolic signatures of human adiposity

INTERMAP USA: N=1,880

Paul Elliott,^{1*†} Joram M. Posma,^{1,2†} Queenie Chan,¹ Isabel Garcia-Perez,² Anisha Wijeyesekera,² Magda Bictash,² Timothy M. D. Ebbels,² Hirotsugu Ueshima,³ Liancheng Zhao,⁴ Linda van Horn,⁵ Martha Daviglus,^{5,6} Jeremiah Stamler,⁵ Elaine Holmes,² Jeremy K. Nicholson²*

1: ketoleucine, 2: leucine, 3: valine, 4: 2-hydroxyisobutyrate, 5: alanine, 6: lysine, 7: N-acetyl signals from urinary glycoproteins, 8: N-acetyl neuraminate, 9: phenylacetylglutamine, 10: glutamine, 11: proline betaine, 12: 4-cresyl sulfate,13: succinate, 14: citrate, 15: dimethylamine, 16: TMA, 17: dimethylglycine, 18: creatinine, 19: ethanolamine, 20: O-acetyl carnitine, 21: glucose, 22: 3-methylhistidine, 23: glycine, 24: hippurate, 25: pseudouridine, 26: NMNA, 27: 3-hydroxymandelate, 28: tyrosine, 29: 4-hydroxymandelate, 30: formate, U1 to U26 unidentified

"METABONETWORKS": VISUALIZATION SYSTEM FOR BMI BIOMARKERS

Minimally-structured symbiotic metabolic network connecting BMI biomarkers, n=1880 US citizens

Nutriome...

INTERMAP Study

A Nutrient-Wide Association Study on Blood Pressure

Ioanna Tzoulaki, PhD;* Chirag J. Patel, PhD;* Tomonori Okamura, MD, PhD; Queenie Chan, PhD; Ian J. Brown, PhD; Katsuyuki Miura, MD, PhD; Hirotsugu Ueshima, MD, PhD; Liancheng Zhao, MD; Linda Van Horn, PhD; Martha L. Daviglus, MD, PhD; Jeremiah Stamler, MD; Atul J. Butte, MD, PhD; John P.A. Ioannidis, MD, DSc; Paul Elliott, MB BS, PhD

Tzoulaki et al. *Circulation 2012;126:2456-2464*

Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption¹⁻³

Silke S Heinzmann, Ian J Brown, Queenie Chan, Magda Bictash, Marc-Emmanuel Dumas, Sunil Kochhar, Jeremiah Stamler, Elaine Holmes, Paul Elliott, and Jeremy K Nicholson

Α Objective assessment of dietary patterns by use of metabolic Day 2 Day 0 Day Day 3 phenotyping: a randomised, controlled, crossover trial Breakfast STD STD STD STD Spectroscopy STD STD STD STD Lunch STD STD STD + FRUIT STD Dinner Urine Isabel Garcia-Perez*, Joram M Posma*, Rachel Gibson, Edward S Chambers, Tue H Hansen, Henrik Vestergaard, Torben Hansen, Manfred Beckmann, sampling 75 [ppm] Oluf Pedersen, Paul Elliott, Jeremiah Stamler, Jeremy K Nicholson, John Draper, John C Mathers, Elaine Holmes*, Gary Frost* Multivariate Analysis Lancet Diabetes Endocrinol 2017: (PLS-DA) 5:184-95 •standard diet • fruit challenge hippuric acid proline betaine D R2Y=0.61 Q2Y=0.33 Diet 1 higher (healthy) fruit challenge tartrate unknown hippuric acid unknow standard diet 8.6 7.8 7.4 3.5 2.5 [ppm] T [1] 50 8.2 0 100 150 pol--10 ³⁰⁰ B volunteer 1 - e -Diet 4 higher (unhealthy) -20 volunteer 2 --volunteer 3 ---volunteer 4 volunteer 5 --volunteer 6 -mean (n=6)___ Relative intensity (×10⁻⁴) -30 -20 -10 0 10 20 [h] FIGURE 2. Urinary excretion kinetics of proline betaine after orange juice consumption (n = 6). A: Proline betaine singlet at δ 3.11 was integrated over the spectral region δ 3.106–3.116 as shown where the peak overlap is minimal. B: Mean and SD proline betaine integral (solid Diet 1 Diet 4 Diet 1 Diet 4 Diet 1 Diet 4 bold line) and the proline betaine integral for each of the 6 volunteers plotted over time. The red arrow indicates the time of orange juice consumption. carnitine hippurate tartrate ppm, parts per million.

Dietary metabolome

Am J Clin Nutr 2010:92:436-43

Cohorts...

Large cohort studies (examples)

n

UK Biobank

- Clinical & lifestyle data and stored samples on 500k men & women ages 40-69
- GWAS, biochemistry for all 500k
- Imaging visit (MRI, DXA, carotid, eye) for 100k
- Prospective follow up over many years

			Number of aliquots		
	Vacutainer tube	Fractions	$-80^{\circ}C$	Liquid N ₂	
	EDTA $(9 \text{ ml}) \times 2$	Plasma	6	2	
Ś		Buffy coat	2	2	
2		Red cells	1	1	
5	LH (PST)	Plasma	3	1	
)	Clot activator (SST)	Serum	3	1	
	ACD	DMSO blood	_	2	
	EDTA (4ml)	Haematology (immediate)	_	_	
	Urine	Urine	4	2	
	Total Aliquots		19	11	

PST, plasma separation tube; SST, serum separation tube; LH, lithium heparin. Plus Tempus tube (RNA) and saliva

Elliott & Peakman *Int J Epidemiol* 2008; 37: 234-44 Sudlow et al *PLoS Med* 2015; 12(3):e1001779

UK Biobank: Record linkage

Primary care data

Courtesy M Landray

The Systems Biology Lesson – Integration Takes Effort

Bio-medical data Biologists, Clinicians Models Numerical scientists

The fixation with integration

Bridging skills: Understanding Programming Data types Metadata Methodologies Software

Clue C

interpretation

Data integration Models Hypothesis testing

Interdisciplinary Training and skillset building

Key Takeaways

- New approaches (*omics*) to capitalise on wellphenotyped cohorts and biobanks with longterm follow-up
- New insights on pathways and mechanisms linking environmental exposures to disease (*exposome*)
- Integrating, analysing and obtaining new knowledge from this wealth of information – computational challenge!
- Requires new ways of working and integrated inter-disciplinary approaches

